Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : 2x2 + 3x - 5
= 2x2 - 2x + 5x - 5
= 2x(x - 1) + 5(x - 1)
= (x - 1) (2x + 5)
3) x2 + x - 6
= x2 + 2x - 3x - 6
= x(x + 2) - (3x + 6)
= x(x + 2) - 3(x + 2)
= (x - 3)(x + 2)
a,2x2-7x+6=(2x2-4x)-(3x-6)
=2x(x-3)-3(x-2)=(x-2)(2x-3)
b,x2+x-6=(x2+3x)-(2x+6)
=x(x-3)-2(x-3)=(x-3)(x-2)
c,x3+3x2+6x+4=x3+x2+2x2+2x+4x+4
=(x+1)(x2+2x+4)
d,x10+x5+1=(x10-x)+(x5-x2)+(x2+x+1)
=x((x3)3-1)+x2(x3-1)+(x2+x+1)
=x(x3-1)(x6+x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=x(x-1)(x2+x+1)+x2(x-1)(x2+x+1)+(x2+x+1)
(x2+x+1)(x2-x+x3-x2+1)
e,(12x2-12xy+3y2)-10x(2x-y)=3(4x2-4xy+y2)-10x(2x-y)
=3(2x-y)2-10x(2x-y)=(2x-y)(6x-3y-10x)=(2x-y)(-4x-3y)
phân tích đa thức thành nhân tử
a,2x^2-7x+6
b,x^2+x-6
c,x^3+3x^2+6x+4
d,x^10+x^5+1
e,(12x^2-12xy+3y^2)-10x(2x-y)
1) \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
3) \(x^4+2x^2-3\)
\(=\left(x^2+1\right)^2-4\)
\(=\left(x^2+1-2\right)\left(x^2+1+2\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4) \(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
1, \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+6x^2+11x+6\)
\(=\left(x^3+3x^2\right)+\left(3x^2+9x\right)+\left(2x+6\right)\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
1.Phân tích đa thức thành nhân tử:
Sửa đề a từ x1 thành x2
\(a,x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-4\right)\)
\(b,x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6x\right)\)
\(=\left(x+1\right)\left(x^2+11x\right)\)
\(=\left(x+1\right)\left(x+\sqrt{11x}\right)\left(x-\sqrt{11x}\right)\)