K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

2n + 5 chia 2n + 3 dư 2

2n + 3 chia 2n + 1 dư 2

Không chứng minh được !

15 tháng 2 2016

không được đâu vì các số này là số nguyên tố cùng nhau

24 tháng 2 2017

Đây là dạng toán về: Nguỵ biện về Toán học.
Nguỵ biện là sự cố ý suy luận sai, nhưng làm như là đúng. Chẳng hạn như : 1 + 1 =3
Bài toán có thể suy luận như sau:
Giải
1 + 1 = 3
2 = 3
Gỉa sử ta có đẳng thức:
14 + 6 - 20 = 21 + 9 - 30
Đặt thừa số chung ta có:
2 x ( 7 + 3 - 10 ) = 3 x ( 7 + 3 - 10 )
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau.
Do đó:
2 = 3
Giải thích:
Sự thật 2 không thể bằng 3. Sai lầm trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.
Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a x 0 = b x 0 với bất kì giá trị nào của a và b.
Vì vậy, ta không thể khẳng định được rằng a = b

( Từ ví dụ trên, bạn có thể tìm những sai lầm trong các " chứng minh ". )

14 tháng 5 2020

1+1=3

Ta có:

0.(1+1)=0.3

Vì 2 tích bằng nhau và cùng có chung 1 thừa số là 0

⇒ 2 thừa số còn lại bằng nhau

⇒ 1+1=3

Vậy 1+1=3

23 tháng 2 2017

sao đăng nhiều câu hỏi thế

23 tháng 2 2017

1 + 1 = 3
2 = 3
Gỉa sử ta có đẳng thức:
14 + 6 - 20 = 21 + 9 - 30
Đặt thừa số chung ta có:
2 x ( 7 + 3 - 10 ) = 3 x ( 7 + 3 - 10 )
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau.
Do đó:
2 = 3

23 tháng 2 2017

Lại copy mạng

23 tháng 2 2017

j đấy?? vâng người như tôi thì chỉ zậy thôi!!

9 tháng 8 2017

1) A = 1+2+2\(^2\) + ... + \(2^{200}\)

2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)

2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)

A = 2\(^{201}\) - 1

A+1 = 2\(^{201}\)

Vậy a + 1 = 2\(^{201}\)

2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)

3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)

3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)

2C = 3\(^{2006}\) - 3

2C+3 = 3\(^{2006}\)

Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )

30 tháng 9 2016

1.

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22 + 23 + 24 + ... + 2201

2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

2.

B = 3 + 32 + 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006