K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

1. Hàm số mũ

Cho số a > 0 và a ≠ 1. Hàm số y = a x  được gọi là hàm số mũ cơ số a.

Các tính chất của hàm số mũ y =  a x

Tập xác định (-∞; +∞)
Đạo hàm y’=  a x .lna
Chiều biến thiên

+ Nếu a > 1 thì hàm số luôn đồng biến

+ Nếu 0 < a < 1 thì hàm số nghịch biến

Tiệm cận Trục Ox là tiệm cận ngang
Đồ thị

Đi qua các điểm (0; 1); (1; a)

Nằm phía trên trục hoành ( y =  a x  > 0 mọi x)

 

2. Hàm Logarit

Cho số a > 0 và a ≠ 1 . Hàm số y = logax được gọi là hàm số logarit cơ số a

Giải bài tập Giải tích 12 | Để học tốt Toán 12

Tập xác định (0; +∞)
Đạo hàm Giải bài tập Giải tích 12 | Để học tốt Toán 12
Chiều biến thiên

+ Nếu a > 1: hàm số luôn đồng biến

+ Nếu 0 < a < 1: hàm số luôn nghịch biến

Tiệm cận Trục Oy là tiệm cận đứng
Đồ thị

Đi qua các điểm (1; 0); (a; 1)

Nằm bên phải trục tung.

3. Liên hệ giữa đồ thị của hàm số mũ và hàm số logarit cùng cơ số: Đồ thị của hàm số mũ và đồ thị của hàm số logarit đối xứng nhau qua đường phân giác góc phần tư thứ nhất.

27 tháng 12 2021

1. Hàm số mũ

Cho số a > 0 và a ≠ 1. Hàm số y = ax được gọi là hàm số mũ cơ số a.

Các tính chất của hàm số mũ y = ax

Tập xác định

(-∞; +∞)

Đạo hàm

y’= ax.lna

Chiều biến thiên

+ Nếu a > 1 thì hàm số luôn đồng biến

+ Nếu 0 < a < 1 thì hàm số nghịch biến

Tiệm cận

Trục Ox là tiệm cận ngang

Đồ thị

Đi qua các điểm (0; 1); (1; a)

Nằm phía trên trục hoành ( y = ax > 0 mọi x)

2. Hàm Logarit

Cho số a > 0 và a ≠ 1 . Hàm số y = logax được gọi là hàm số logarit cơ số a

Tập xác định(0; +\(\infty\))
Đạo hàmy' = \(\frac{1}{xIna}\)
Chiều biến thiên

+ Nếu a > 1: hàm số luôn đồng biến

+ Nếu 0 < a < 1: hàm số luôn nghịch biến

Tiệm cậnTrục Oy là tiệm cận đứng
Đồ thị

Đi qua các điểm (1; 0); (a; 1)

Nằm bên phải trục tung.

3. Liên hệ giữa đồ thị của hàm số mũ và hàm số logarit cùng cơ số: Đồ thị của hàm số mũ và đồ thị của hàm số logarit đối xứng nhau qua đường phân giác góc phần tư thứ nhất.

HT

22 tháng 3 2018

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Cái này bạn hoàn toàn có thể xem ở sách giáo khoa được mà?

25 tháng 5 2018

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với mọi t ≥ 0 nên c(t) tăng trên [0; +∞] , nghĩa là nồng độ c ngày càng tăng. 

Chọn đáp án B.

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1