K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

Cho hàm số y = f(x) có đạo hàm trên K.

+ f(x) đồng biến trên K ⇔ f’(x) ≥ 0 với ∀ x ∈ K, f’(x) = 0 tại hữu hạn điểm.

+ f(x) nghịch biến trên K ⇔ f’(x) ≤ 0 với ∀ x ∈ K, f’(x) = 0 tại hữu hạn điểm.

2 tháng 4 2017

Giả sử hàm số y=f(x)y=f(x)có đạo hàm trên khoảng D

a.Nếu hàm số y=f(x)y=f(x) đồng biến trên D thì f'(x)≥0,∀x∈D

b.Nếu hàm số y=f(x)y=f(x) nghịch biến trên D thì f'(x)≤0,∀x∈D

*** Lưu ý : nếu trên miền D, có tồn tại vài giá trị xo sao cho f'(xo)=0. Không ảnh hưởng đến tính đơn điệu của hàm y=f(x) trên miền đó.

31 tháng 12 2017

- Điều kiện đồng biến, nghịch biến của hàm số:

Cho hàm số y = f(x) có đạo hàm trên khoảng K.

+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.

+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.

- Xét hàm số

 

 

+ Hàm số đồng biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số nghịch biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trên Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

nghịch biến trên các khoảng Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 và (1; +∞)

- Xét hàm số Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Ta có: D = R \ {1}

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 ∀ x ∈ D.

⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).

31 tháng 3 2017

*Xét hàm số: y= -x3 + 2x2 – x – 7

Tập xác định: D = R

\(y'\left(x\right)=-3x^2+4x-1\)\(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )

Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).

Tập xác định: D = R{1}

\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)

Vậy hàm số nghịch biến trong từng khoảng (-,1) và (1, +)

24 tháng 5 2017

Điều kiện để hàm có cực trị:

Định lí 1: Cho hàm số y = f(x) liên tục trên K = ( x o  – h;  x o  + h), h > 0 và có đạo hàm trên K hoặc trên K \ {x0}, nếu:

- f’(x) > 0 trên ( x o  – h;  x o ) và f’(x) < 0 trên ( x o ;  x o  + h) thì  x o  là một điểm cực đại của f(x).

- f’(x) < 0 trên ( x o  – h;  x o ) và f’(x) > 0 trên ( x o ;  x o  + h) thì  x o  là một điểm cực tiểu của f(x).

29 tháng 11 2018

Đáp án D

13 tháng 5 2017

Đáp án A.

Hàm số có y = x4 – x + 2 không là hàm số chẵn nên mệnh đề I sai.

Mệnh đề II, III, IV đúng

22 tháng 8 2018





29 tháng 7 2018