Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu a nhé!
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)
\(B=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=t\)
Ta được:
\(B=t\left(t+1\right)-6\)
\(B=t^2+t-6\)
\(B=t^2+3t-2t-6\)
\(B=t\left(t+3\right)-2\left(t+3\right)\)
\(B=\left(t+3\right)\left(t-2\right)\)
\(B=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
Vậy......
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Đặt \(x^2+x+1=t\)
Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)
\(=t^2+3xt+2x^2\)
\(=t^2+xt+2xt+2x\)
\(=t\left(t+x\right)+2x\left(t+x\right)\)
\(=\left(t+x\right)\left(t+2x\right)\)
\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)
\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)
Chúc bạn học tốt.
F=x2+2xy+y2-x-y-12
= (x + y)^2 - (x + y) - 12
= (x + y)(x + y - 1) - 12
đặt x + y = t
F = t(t - 1) - 12
= t^2 - t - 12
= (t - 4)(t + 3)
G=(x2-3x-1)2-12(x2-3x-1)+27
đăth x^2 - 3x - 1 = t
G = t^2 - 12t + 27
= (t - 3)(t - 9)
có t = x^2 - 3x - 1
thay vào
Câu F ( kiểm tra lại đề )
Câu G . Đặt x^2 -3x-1=t
t^2 -12t+27 ( thực hiện pp tách)
=4(x+5)(x+6)(x+10)(x+12)-3x^2
=4[(x+5)(x+12)][(x+6)(x+10)]-3x^2
=4(x^2+17x+60)(x^2+16x+60)-3x^2
đặt x^2+16x+60=y
=>4(y+x)y-3x^2
=4y^2+4yx-3x^2
=4y^2-2yx+6yx-3x^2
=2y(2y-x)+3x(2y-x)
=(2y-x)(2y+3x)
thay y=x^2+16x+60
=>(2x^2+32x+120-x)(2x^2+32x+120+3x)
=(2x^2+16x+15x+120)(2x^2+35x+120)
=2x(x+8)+15(x+8)(2x^2+35x+120)
=(x+8)(2x+15)(2x^2+35x+120)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!