Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích đa thức thành nhân tử đặt biến phụ
(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2
Theo dõi Vi phạm Toán 8 Bài 6Trắc nghiệm Toán 8 Bài 6Giải bài tập Toán 8 Bài 6Trả lời (1)(x2 + y2 + z2)(x + y + z)2 + (xy + yz +zx)2
= (x2 + y2 + z2)(x2 + y2 + z2 + 2xy +2yz +2zx) + (xy + yz + zx)2
= (x2 + y2 + z2)(x2 + y2 + z2) + (x2 + y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2
= (x2 + y2 + z2)2 + 2(x2 + y2 + z2)(xy + yz + zx) + (xy + yz + zx)2
= (x2 + y2 + z2 + xy + yz + zx)2
Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.
bởi Bùi Xuân Chiến
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2\)
\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2-xyz+xyz\)
\(=\left(yz^2-xz^2-xyz+x^2z\right)-\left(zy^2-xyz-xy^2+x^2y\right)\)
\(=z\left(yz-xz-xy+x^2\right)-y\left(zy-xz-xy+x^2\right)\)
\(=\left(z-y\right)\left(yz-xz-xy+x^2\right)\)
\(=\left(z-y\right)\left[y\left(z-x\right)-x\left(z-x\right)\right]\)
\(=\left(z-y\right)\left(y-x\right)\left(z-x\right)\)
\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)
\(2xy+2yz+2zx-x^2-y^2-z^2\)
\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)
\(-\left(x+y+z\right)^2\)