Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết lại đa thức bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
1) x3 + 5x2 + 3x - 9
= x3 + 2x2 + 3x2 + 6x - 3x - 9
= ( x3 + 2x2 ) + (3x2 + 6x ) - ( 3x + 9 )
= x2 ( x+ 2 ) + 3x ( x + 2) - 3( x +2 )
= ( x + 2 ) ( x2 + 3x -3 )
2) x3 + 5x2 + 8x + 4
= ( x3 + x2 ) + ( 4x2 + 4x ) + ( 4x + 4 )
= x2 ( x + 1 ) + 4x ( x + 1 ) + 4 ( x + 1 )
= ( x + 1) ( x2 + 4x + 4 )
= (x + 1 ) ( x + 2 )2
3) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= ( x3 - 8x2 ) - ( x2 - 8x ) - ( 2x - 16 )
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
4) x3 - 4x2 + x + 6
= x3 - 3x2 - x2 + 3x - 2x + 6
= ( x3 - 3x2 ) - ( x2 - 3x ) - ( 2x - 6)
= x2 ( x - 3 ) - x ( x- 3 ) - 2 ( x - 3)
= ( x - 3 ) ( x2 - x - 2 )
\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)
\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)
\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)
\(x^2-25=\left(x-5\right)\left(x+5\right)\)
\(a,x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
Lời giải:
a.
$x^4+10x^3+26x^2+10x+1$
$=(x^4+10x^3+25x^2)+x^2+10x+1$
$=(x^2+5x)^2+2(x^2+5x)+1-x^2$
$=(x^2+5x+1)^2-x^2=(x^2+5x+1-x)(x^2+5x+1+x)$
$=(x^2+4x+1)(x^2+6x+1)$
b.
$x^4+x^3-4x^2+x+1$
$=(x^4-x^2)+(x^3-x^2)+(x-x^2)+(1-x^2)$
$=x^2(x-1)(x+1)+x^2(x-1)-x(x-1)-(x-1)(x+1)$
$=(x-1)[x^2(x+1)+x^2-x-(x+1)]$
$=(x-1)(x^3+2x^2-2x-1)$
$=(x-1)[(x^3-1)+(2x^2-2x)]=(x-1)[(x-1)(x^2+x+1)+2x(x-1)]$
$=(x-1)(x-1)(x^2+x+1+2x)=(x-1)^2(x^2+3x+1)$