K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(=a^3-3a^2+7a^2-21a-\left(8a-24\right)\)hay 

\(=a^2\left(a-3\right)+8a\left(a-3\right)-8\left(a-3\right)\)

\(=\left(a-3\right)\left(a^2+8a-8\right)\)

CHÚC BẠN HỌC TỐT...

21 tháng 6 2017

\(a^3+4a^2-29a+24\)

\(=\left(a^3-3a^2\right)+\left(7a^2-21a\right)+\left(-8a+24\right)\)

\(=\left(a-3\right)\left(a^2+7a-8\right)\)

\(=\left(a-3\right)\left[\left(a^2-a\right)+\left(8a-8\right)\right]\)

\(=\left(a-3\right)\left(a-1\right)\left(a+8\right)\)

19 tháng 9 2017

a) \(a^3+4a^2-29a+24=\left(a^3-a^2\right)+\left(5a^2-5a\right)+\left(-24a+24\right)\)

\(=\left(a-1\right)\left(a^2+5a-24\right)=\left(a-1\right)\left(a^2+8a-3a-24\right)=\left(a-1\right)\left(a+8\right)\left(a-3\right)\)

b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)

\(\Rightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)

\(=3\left(a^2b+ab^2\right)+3\left(bc^2+ac^2\right)+3\left(a^2c+abc\right)+3\left(bc^2+abc\right)\)

\(=3\left(a+b\right)\left(ab+bc+ac+bc\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

c) Theo trên ta có 

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)^3-3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

d) \(x^5+x-1=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)

21 tháng 4 2018

a)  4 a - 3 2 với a < 3

= 2|a-3|

= 2(3-a) (do a < 3)

a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\)

b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\sqrt{2}\left(1+\sqrt{3}+\sqrt{7}+\sqrt{21}\right)\)

\(=\sqrt{2}\left(1+\sqrt{3}\right)\left(1+\sqrt{7}\right)\)

c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{6}}{2}\)

2 tháng 7 2021

a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{3}.\sqrt{3}.\sqrt{2}-\sqrt{2}.\sqrt{2}.\sqrt{3}=\left(\sqrt{3}-\sqrt{2}\right).\sqrt{6}\)

b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\left(\sqrt{3}+1\right)\sqrt{2}+\sqrt{14}\left(\sqrt{3}+1\right)=\sqrt{2}\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)

c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{2}}=\sqrt{\dfrac{9}{4}}\)

24 tháng 11 2021

\(a,=\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)\\ b,=\left(\sqrt{x}-\sqrt{y}\right)^2\\ c,=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\\ d,=\sqrt{x}\left(\sqrt{y}+2\right)-3\left(\sqrt{y}+2\right)\\ =\left(\sqrt{x}-3\right)\left(\sqrt{y}+2\right)\)

1 tháng 10 2021

\(11-2\sqrt{11}=\sqrt{11}.\sqrt{11}-2\sqrt{11}=\left(\sqrt{11}-2\right)\sqrt{11}\)

 

2 tháng 9 2021

\(\frac{1}{3}\sqrt{9+6a+a^2}+\frac{4a}{3}+5\)

\(=\frac{1}{3}\sqrt{\left(a+3\right)^2}+\frac{4a}{3}+5\)

\(=\frac{1}{3}\left|a+3\right|+\frac{4a}{3}+5\)(1)

Với a < 3 \(\left(1\right)=-\frac{1}{3}\left(a+3\right)+\frac{4}{3}a+5=a+4\)

Với a >= 3 \(\left(1\right)=\frac{1}{3}\left(a+3\right)+\frac{4}{3}a+5=\frac{5}{3}a+6\)

Bài 2: 

a: Ta có: \(\sqrt{\sqrt{5}-x\sqrt{3}}=\sqrt{8+2\sqrt{15}}\)

\(\Leftrightarrow\sqrt{5}-x\sqrt{3}=8+2\sqrt{15}\)

\(\Leftrightarrow x\sqrt{3}=\sqrt{5}-8-2\sqrt{15}\)

\(\Leftrightarrow x=\dfrac{\sqrt{15}-8\sqrt{3}-6\sqrt{5}}{3}\)

b: Ta có: \(\sqrt{2+\sqrt{\sqrt{x}+3}}=3\)

\(\Leftrightarrow\sqrt{\sqrt{x}+3}=7\)

\(\Leftrightarrow\sqrt{x}=46\)

hay x=2116