K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi:

x(2 – 3x) ≠ 0 ⇔ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy phân thức  5 2 x - 3 x 2  xác định với x ≠ 0 và x ≠ 2/3

17 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 xác định khi:

(x – 2y)(x + 2y) ≠ 0 ⇔ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ x  ≠   ± 2y

10 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 xác định khi:

4 - 3 x 2 ≠ 0 ⇒ 4 – 3x  ≠  0 ⇒ x  ≠  4/3

13 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 xác định khi 2 x + 1 3 ≠ 0

Suy ra: 2x + 1 ≠ 0 ⇒ x  ≠  - 1/2

6 tháng 1 2018

1) \(\frac{3}{x^2-4y^2}\)

\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)

Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)

2) \(\frac{2x}{8x^3+12x^2+6x+1}\)

\(=\frac{2x}{\left(2x+1\right)^3}\)

Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)

\(\Rightarrow2x+1\ne0\)

\(\Rightarrow x\ne-\frac{1}{2}\)

3) \(\frac{5}{2x-3x^2}\)

\(=\frac{5}{x\left(2-3x\right)}\)

Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

16 tháng 12 2021

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)

29 tháng 12 2021

a: ĐKXĐ: x<>-3

b: =x+3

29 tháng 12 2021

còn c và d thôi bạn ơi

giúp mình với

 

28 tháng 12 2022

\(P=\dfrac{3x^2+6x+3}{x+1}\)

\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)

\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)

\(c,x=1\Rightarrow P=3.1+3=6\)