K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)

1 tháng 11 2021

1D  2C

Câu 1: D

Câu 2: C

16 tháng 10 2023

Sửa đề:

\(x^2+4x+3\\=x^2+x+3x+3\\=x(x+1)+3(x+1)\\=(x+1)(x+3)\)

22 tháng 11 2019

Cách 1: x2 – 4x + 3

= x2 – x – 3x + 3

(Tách –4x = –x – 3x)

= x(x – 1) – 3(x – 1)

(Có x – 1 là nhân tử chung)

= (x – 1)(x – 3)

Cách 2: x2 – 4x + 3

= x2 – 2.x.2 + 22 + 3 – 22

(Thêm bớt 22 để có HĐT (2))

= (x – 2)2 – 1

(Xuất hiện HĐT (3))

= (x – 2 – 1)(x – 2 + 1)

= (x – 3)(x – 1)

\(x^2\left(x-3\right)+4\left(3-x\right)\)\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

23 tháng 8 2023

\(x^2\left(x-3+12-4x\right)\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

15 tháng 2 2019

Ta có

x 7   –   x 2   –   1   =   x 7   –   x   –   x 2   +   x   –   1     =   x ( x 6   –   1 )   –   ( x 2   –   x   +   1 )     =   x ( x 3   –   1 ) ( x 3   +   1 )   –   ( x 2   –   x   +   1 )     =   x ( x 3   –   1 ) ( x   +   1 ) ( x 2   –   x   +   1 )   –   ( x 2   –   x   +   1 )     =   ( x 2   –   x   +   1 ) [ x ( x 3   –   1 ) ( x   +   1 )   –   1 ]     = x 2 − x + 1 x 4 − x x + 1 − 1 = x 2 − x + 1 x 5 + x 4 − x 2 − x − 1

Đáp án cần chọn là: B

25 tháng 6 2019

Ta có x 2 – 6x + 8

= x 2 – 4x – 2x + 8

= x(x – 4) – 2(x – 4)

= (x – 4)(x – 2)

Đáp án cần chọn là: A

28 tháng 1 2018

Ta có x 2 – 7x + 10

= x 2 – 2x – 5x + 10

= x(x – 2) – 5(x – 2) = (x – 5)(x – 2)

Đáp án cần chọn là: B

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)