Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-1=\left(2x+1\right)\left(2x-1\right)\)
b) \(\left(x+2\right)^2-9=\left(x-1\right)\left(x+5\right)\)
c) \(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left(a+b-a+2b\right)\left(a+b+a-2b\right)\)
\(=3b\left(2a-b\right)\)
`a, 4x^2-1 = (2x+1)(2x-1)`
`b, (x+2)^2-9 = (x+2-3)(x+2+3) = (x-1)(x+5)`
`c, (a+b)^2-(a-2b)^2 = (a+b+a-2b)(a+b-a+2b) = (2a-b)(3b)`
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
Với \(a=-b\) ta được \(A=0\)
Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k
Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)
Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Với \(a=b\Leftrightarrow B=0\)
Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất
Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số
\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)
Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)
Cho \(a=-b\Leftrightarrow C=0\)
Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2
Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số
\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)
Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
Với \(a=b+c\Leftrightarrow D=0\)
Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất
Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số
\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)
Cho \(a=b=c=1\Leftrightarrow Q=1\)
Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
1. (a2+b2+ab)2-a2b2-b2c2-c2a2
=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2
=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2
=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)
=(a2+b2)[(a+b)2-c2]
=(a2+b2)(a+b+c)(a+b-c)
2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2
3. a(b3-c3)+b(c3-a3)+c(a3-b3)
=ab3-ac3+bc3-ba3+ca3-cb3
=a3(c-b)+b3(a-c)+c3(b-a)
=a3(c-b)-b3(c-a)+c3(b-a)
=a3(c-b)-b3(c-b+b-a)+c3(b-a)
=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)
=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)
=(a-b)(c-b)(a2+ab+2b2+bc+c2)
4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)
5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]
=2b(3a2+b2)
6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]
=(x-y-1)(x2+y2+xy-2x-y+1)
7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
(Đúng nhớ like nhá !)
Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi
b) a3 + b3 + c3 - 3abc
= ( a + b)3 - 3ab - 3ba + c - 3abc
= (a3 + 3a2b + 3ab2 + b3) + c3 - (3a2b + 3ab2 + 3ab)
= (a + b)3 + c2 - 3ab(a + b + c)
= (a + b + c) [ (a + b)2 - ( a + b )c + c^2 ] - 3ab(a + b + c)
= ( a + b + c ) ( a2 + b2 + 2ab - ac - bc + c2 -3ab )
= ( a + b + c ) ( a2 + b2 + c2 - ab - ac - bc
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
a) \(A=a^3-b^3-c^3-3abc\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)-c^3-3abc\)
\(=\left(a-b-c\right)\left[\left(a-b\right)^2+c\left(a-b\right)+c^2\right]+3ab\left(a-b-c\right)\)
\(=\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2+3ab\right)\)
\(=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
b) \(B=a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)+a^2c^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)-a^2c^2\left[\left(a-b\right)+\left(b-c\right)\right]\)
\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)-a^2c^2\left(a-b\right)-a^2c^2\left(b-c\right)\)
\(=a^2\left(a-b\right)\left(b^2-c^2\right)+c^2\left(b-c\right)\left(b^2-a^2\right)\)
\(=a^2\left(a-b\right)\left(b-c\right)\left(b+c\right)+c^2\left(b-c\right)\left(b-a\right)\left(b+a\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-bc^2-ac^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)