K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

22 tháng 12 2016

\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)

\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)

\(=\left[a\left(x+y\right)+b\left(x+y\right)\right]\left[a\left(x-y\right)-b\left(x-y\right)\right]\)

\(=\left(a+b\right)\left(a-b\right)\left(x+y\right)\left(x-y\right)\)

\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)

\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)

\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)

22 tháng 12 2016

a)

(ax+by)2 - (ay+bx)2

=(ax+by-ay-bx)(ax+by+ay+bx)

=[ a(x-y) -b(x-y)][ a(x+y) + b(x+y)]

=(a-b)(x-y)(a+b)(x+y)

b)(a2+b2-5)2 - 4(ab+2)2

=(a2+b2-5-2ab-4)(a2+b2-5+2ab+4)

=[ (a-b)2 -9][ (a+b)2 -1]

=(a-b-3)(a-b+3)(a+b-1)(a+b+1)

15 tháng 7 2018

a) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(b+c+a\right)\left(b+c-a\right)\left(a+b-c\right)\left(a-b+c\right)\)

b) \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)

\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)

\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)

c) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)

\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b+3\right)\left(a-b-3\right)\)

d) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)

\(=\left(4x^2-3x-18+4x^2+3x\right)\left(4x^2-3x-18-4x^2-3x\right)\)

\(=\left(8x^2-18\right)\left(-6x-18\right)\)

\(=\left[2\left(4x^2-9\right)\right]\left[-6\left(x+3\right)\right]\)

\(=12\left(2x+3\right)\left(2x-3\right)\left(x+3\right)\)

14 tháng 10 2021

a: \(x^2-2xy+y^2+3x-3y-4\)

\(=\left(x-y\right)^2+3\left(x-y\right)-4\)

\(=\left(x-y+4\right)\left(x-y-1\right)\)

 

 

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bài 1:

a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$

$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$

b.

$(x+1)(x+2)(x+3)(x+4)-24$

$=[(x+1)(x+4)][(x+2)(x+3)]-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

$=a(a+2)-24$ (đặt $x^2+5x+4=a$)

$=a^2+2a-24=(a^2-4a)+(6a-24)$

$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bài 2:

a. ĐKXĐ: $x\neq 3; 4$

\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)

b. $x^2+20=9x$

$\Leftrightarrow x^2-9x+20=0$

$\Leftrightarrow (x-4)(x-5)=0$

$\Rightarrow x=5$ (do $x\neq 4$)

Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$

Câu 1: 

=>15(2x+1)-8(3x-1)=100

=>30x+15-24x+8=100

=>6x+23=100

hay x=77/6

Câu 2:

=>2(5x-3)+12-3(7x-1)=x+2

=>10x-6+12-21x+3-x-2=0

=>-12x=-7

hay x=7/12

Câu 3: 

\(\Leftrightarrow2\left(x^2-1\right)+3\left(x+1\right)=2\left(x^2-4x+4\right)\)

\(\Leftrightarrow2x^2-2+3x+3-2x^2+8x-8=0\)

=>11x-7=0

hay x=-7/11

20 tháng 1 2022

Câu 4:

(x - 4)^3/6 + 1 = x(x + 1)/2 - (x - 5)(x + 5)/3

<=> (x - 4)^3 + 6/6 = x^2 + x/2 - x^2 - 25/3

<=> (x - 4)^3 + 6/6 = 3x^2 + 3x - 2x^2 + 50/6

<=> (x - 4)^3 + 6 = 3x^2 + 3x - 2x^2 + 50

<=> x^3 - 12x^2 + 48x - 58 = x^2 + 3x + 50

<=> x^3 -13x^2 + 45x - 108 = 0

Đến đây bạn bấm máy nhẩm nghiệm là ra nhé

Câu 5:

3(x + 2)^3/5 - (x - 1)^2/10 = (x - 3)(x + 3)/2

<=> 6(x + 2)^3 - (x - 1)^2/10 = 5(x^2 - 9)/10

<=> 6(x + 2)^3 - (x - 1)^2 = 5(x^2 - 9)

<=> 6x^3 + 36x^2 + 72x + 48 - x^2 + 2x - 1 - 5x^2 + 45 = 0

<=> 6x^3 + 30x^2 + 74x + 92 = 0

Đến đây bạn bấm máy nhẩm nghiệm như câu 4 nhé

11 tháng 10 2020

Câu 1:

a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)

\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)

b) \(x^4+2009x^2+2008x+2009\)

\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)

c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)

11 tháng 10 2020

Câu 1.

a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )

b) x4 + 2009x2 + 2008x + 2009 

= x4 + 2009x2 + 2009x - x + 2009 

= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )

= x( x3 - 1 ) + 2009( x2 + x + 1 )

= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )

= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]

= ( x2 + x + 1 )( x2 - x + 2009 )

c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )

Câu 2. 

3x2 + x - 6 - √2 = 0

<=> ( 3x2 - 6 ) + ( x - √2 ) = 0

<=> 3( x2 - 2 ) + ( x - √2 ) = 0

<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0

<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0

<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)

+) x - √2 = 0 => x = √2

+) 3( x + √2 ) + 1 = 0

<=> 3( x + √2 ) = -1

<=> x + √2 = -1/3

<=> x = -1/3 - √2

Vậy S = { √2 ; -1/3 - √2 }

Câu 3.

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t

Dấu "=" xảy ra khi t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

=> MinA = -4 <=> x = 1 hoặc x = -2