K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

x^8 + 14.x^4 + 1 = x^8 + 7.x^4 + 7.x^4 + 49 -48

                           = x^4.(x^4 + 7) + 7.(x^4 + 7) - \(\sqrt{48}\)

                           = (x^4 +7)2 - \(\sqrt{48}\)

                          = (x^4 + 7 - \(\sqrt{48}\)) . (x^4 + 7 + \(\sqrt{48}\))

9 tháng 5 2020

\(x^8+14x^4+1\)

\(\Leftrightarrow\left(x^4\right)^2+2.x^4.7+49-48\)

\(\Leftrightarrow\left(x^4+7\right)^2-\left(\sqrt{48}\right)^2\)

\(\Leftrightarrow\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)

10 tháng 8 2015

\(=x^8-x^7+x^5-x^4+x^2+x^7-x^6+x^4-x^3+x+x^6-x^5+x^3-x^2+1\)

\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)+\left(x^6-x^5+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

19 tháng 9 2017

Nhớ mình nha mình âm diểm rồi:

M=(x+2)(x+3)(x+4)(x+5)-24

M=(x2+3x+2x+6)(x2+5x+4x+20)-24

M=(x2+5x+6)(x2+9x+20)-24

M=x4+9x3+20x2+5x+14x+100x+6x2+54x+120-24

M=x4+14x3+26x2+168x+96

3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

16 tháng 8 2018

\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)

\(=2x^4+6x^3+9x^2+6x+2\)(bạn nhân phá ngoặc rồi thu gọn nhé)

\(=\left(2x^4+2x^3+x^2\right)+\left(4x^3+4x^2+2x\right)+\left(4x^2+4x+2\right)\)

\(=x^2\left(2x^2+2x+1\right)+2x\left(2x^2+2x+1\right)+2\left(2x^2+2x+1\right)\)

\(=\left(x^2+2x+2\right)\left(2x^2+2x+1\right)\)