K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Đề đúng không thế. Nếu đúng thì bài này phức tạp lắm

31 tháng 10 2016

\(x^8+3x^3+1\)

\(=x^8-x^4+4x^4+4\)

\(=\left(x^4-1\right)\cdot\left(x^4+1\right)+4\cdot\left(x^4+1\right)\)

\(=\left(x^4+1\right)\cdot\left(x^4-1+4\right)\)

\(=\left(x^4+1\right)\cdot\left(x^4+3\right)\)

26 tháng 7 2017

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

1 tháng 8 2017

\(x^8+x+1\)

\(=\left(x^8-x^5\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^5\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5\right)\left(x^2+x+1\right)+\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)

\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)

\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=\left(x+1\right)\left(x^3-x^2+2\right)\)

1 tháng 8 2019

\(x^4\ge0;x^2\ge0;4>0\Rightarrow x^4+x^2+4>0\)

1 tháng 8 2019

đề lỗi rồi

22 tháng 11 2015

x^4+64

=(x^2)^2+8^2+2.x^2.8-2.x^2.8

=(x^2+8)^2-16x^2

=(x^2+8-4x)(x^2+8+4x)

21 tháng 12 2023

\(x^3+27x+\left(x+3\right)\left(x-9\right)\)
\(x^3+27x+x^2-6x-27\)
\(x^3+x^2+21x-27\)
Chịu

21 tháng 12 2023

chắc là x^3 + 27x phải là x^3 + 27
cô tôi nhầm đề rồi

2 tháng 9 2019

=x11-x2+x2+x+1

=x2(x9-1)+(x2+x+1)

=x2[(x3)3-13)+(x2+x+1)

=x2(x3-1)(x6+x3+1)+(x2+x+1)

=x2(x6+x3+1)(x-1)(x2+x+1)+(x2+x+1)

Đặt nhân tử chung là x2+x+1 rồi phá hết ngoặc là xong

22 tháng 3 2016

\(=x^2+2x\cdot\frac{1}{2}+\frac{1}{4}-\left(\frac{\sqrt{23}}{2}i\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2\)\(-\left(\frac{\sqrt{23}}{2}i\right)^2\)

\(\left(x+\frac{1}{2}-\frac{\sqrt{23}}{2}i\right)\left(x+\frac{1}{2}+\frac{\sqrt[]{23}}{2}i\right)\)