Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 + 2y2 + b2 + 3xy - bx - by = 0
<=> 4x2 + 4y2 + 2b2 + 6xy - 2bx - 2by = 0
<=> (x2 - 2bx + b2) + (y2 - 2by + y2) + (3x2 + 6xy + 3y2) = 0
<=> (x - b)2 + (y - b)2 + 3(x + y)2 = 0
Ta thấy VT > 0 nên không có nghiệm.
PS: Không phải phân tích nhân tử mà là giải phương trình nhé.
=>(x-\(\sqrt{5}\))2
=>(x-\(\sqrt{5}\)) (x-\(\sqrt{5}\))
\(xy-y\sqrt{x}+\sqrt{x}-1\)
\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)