K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Đặt \(a=x^2+x+1\)\(\Rightarrow\)\(a+1=x^2+x+2\)

Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-6=a.\left(a+1\right)-6\)

                                                                             \(=a^2+a-6\)

                                                                             \(=\left(a^2-2a\right)+\left(3a-6\right)\)

                                                                             \(=a.\left(a-2\right)+3\left(a-2\right)\)

                                                                             \(=\left(a+3\right).\left(a-2\right)\)

                                                                             \(=\left(x^2+x+1+3\right).\left(x^2+x+1-2\right)\)

                                                                             \(=\left(x^2+x+4\right)\left(x^2+x-1\right)\)

   Chúc bn hok tốt

24 tháng 8 2020

( x2 + x + 1 )( x2 + x + 2 ) - 6 (*)

Đặt x2 + x + 1 = t

(*) = t( t + 1 ) - 6

     = t2 + t - 6

     = t2 - 2t + 3t - 6

     = t( t - 2 ) + 3( t - 2 )

     = ( t - 2 )( t + 3 )

     = ( x2 + x + 1 - 2 )( x2 + x + 1 + 3 )

     = ( x2 + x - 1 )( x2 + x + 4 )

     

2 tháng 3 2022

-Đặt \(t=\left(x^2-x+1\right)\)

\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-4xt-xt+4x^2\)

\(=t\left(t-4x\right)-x\left(t-4x\right)\)

\(=\left(t-4x\right)\left(t-x\right)\)

\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)

\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)

\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)

2 tháng 3 2022

CAM ON - HOANG

21 tháng 8 2021

\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)

NV
21 tháng 8 2021

\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)

\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)

\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)

\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)

27 tháng 12 2021

1: =(x-1-y)(x-1+y)

3: =(x-1)(x+1)(x-2)

16 tháng 11 2021

\(=3\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+3\right)\)

31 tháng 8 2021

Là nhân tử rồi bn ơi

31 tháng 7 2017

22 tháng 11 2021

\(1,\\ 12x^6y^3:4x^3y=3x^3y^2\\ \left(x+1\right)\left(x^2-x+1\right)=x^3+1\\ 2x^2y\left(x^2+3xy\right)=3x^4y+6x^3y^2\\ 2,\\ a,=2xy\left(2x+3y-4\right)\\ b,=\left(x-3\right)\left(x+y\right)\\ c,=\left(x-2\right)\left(x+2\right)+y\left(x-2\right)=\left(x+y+2\right)\left(x-2\right)\\ d,=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\\ 3,\\ a,\Leftrightarrow x^2-x^2+2x=2\\ \Leftrightarrow2x=2\Leftrightarrow x=1\\ b,\Leftrightarrow\left(x-2\right)\left(x-2+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2 tháng 9 2018

22 tháng 12 2019

a) Áp dụng HĐT 1 thu được ( 2 x   +   y ) 2 .

b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được

[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).

c) Ta có: 9 - 6x +  x 2  -  y 2 = ( 3   -   x ) 2  -  y 2  = (3 - x - y)(3 -x + y).

d) Ta có: -(x + 2) + 3( x 2  - 4) = -{x + 2) + 3(x + 2)(x - 2)

= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).

1 tháng 7 2023

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)\)

Ai đồ giỏi Toán quasss cho em xin víaaa.