K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

Đặt \(x^2+3x+1=t\)

\(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)

\(=t\left(t-4\right)-5\)

\(=t^2-4t-5\)

tự làm nốt ý này nhé.

những ý kia lát nx mình làm.

13 tháng 12 2018

d) \(x^4+5x^2+9\).Đặt \(x^2=t\) thì:

\(x^4+5x^2+9=t^2+5t+9\)

Làm nốt ý này nhé bạn! Ý kia chút nữa rảnh làm!

2 tháng 9 2021

Bài 2:

a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)

b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)

f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)

g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)

 

a: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=\left(x+1\right)\left(3x-10\right)\)

b: \(x^2+6x+9-4y^2\)

\(=\left(x+3\right)^2-4y^2\)

\(=\left(x+3-2y\right)\left(x+3+2y\right)\)

c: \(x^2-2xy+y^2-5x+5y\)

\(=\left(x-y\right)^2-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-5\right)\)

24 tháng 12 2017

\(a,\left(3x+1\right)^2-\left(x+1\right)^2\)

\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)

\(=2x\left(4x+2\right)\)

\(=4x\left(2x+1\right)\)

\(b,6x-6y-x^2+xy\)

\(=\left(6x-6y\right)-\left(x^2-xy\right)\)

\(=6\left(x-y\right)-x\left(x-y\right)\)

\(=\left(x-y\right)\left(6-x\right)\)

21 tháng 11 2018

(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)

(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)

(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)

(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)

(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)

21 tháng 11 2018

a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)

b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)

c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)

e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)

15 tháng 7 2017

a)\(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(3x-2\right)\left(x-3\right)\)

b)\(8x^2+10x-3=8x^2+12x-2x-3=4x\left(2x+3\right)-\left(2x+3\right)=\left(4x-1\right)\left(2x+3\right)\)

c)\(8x^2-2x-1=8x^2+2x-4x-1=2x\left(4x+1\right)-\left(4x+1\right)=\left(2x-1\right)\left(4x+1\right)\)

13 tháng 11 2018

\(x^2-6x+5+\left(x-5\right)^2\)

\(=x^2-6x+5+x^2-10x+25\)

\(=2x^2-6x-10x+30\)

\(=x.\left(2x-6\right)-5.\left(2x-6\right)\)

\(=\left(x-5\right).\left(2x-6\right)\)

câu 1:

x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)

6 tháng 1 2019

Câu 2 :

a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)

\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)

\(=x^2-2x+1\)

b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)

\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)

Câu 3 :

Sửa đề :

\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)