K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x-y=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

21 tháng 10 2021

a: \(x^4+3x^3+x^2+3x\)

\(=x\left(x^3+3x^2+x+3\right)\)

\(=x\left(x+3\right)\left(x^2+1\right)\)

c: \(x^2-xy-x+y\)

\(=x\left(x-y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x-1\right)\)

8 tháng 1 2022

a) x2+x-2
= x2-x+2x-2
= x(x-1)+2(x-1)
= (x+2)(x-1)
b) 2x2+5x+3
= 2x2+2x+3x+3
= 2x(x+1)+3(x+1)
= (2x+3)(x+1)
c) 3x2+5x-2
= 3x2+6x-1x-2
= 3x(x+2)-1(x+2)
= (3x-1)(x+2)

31 tháng 8 2021

\(A=-x-z\left(x-y\right)+y=-x-xz+zy+y=-x\left(1+z\right)+y\left(1+z\right)=\left(1+z\right)\left(y-x\right)\)

31 tháng 8 2021

A = -(x-y)-z(x-y)=(x-y)(-1-z)=(y-x)(z+1)

4 tháng 9 2021

\(\left(x+y\right)^2+3\left(x+y\right)-10=\left[\left(x+y\right)^2+2\left(x+y\right).\dfrac{3}{2}+\dfrac{9}{4}\right]-\dfrac{49}{4}\)

\(=\left(x+y+\dfrac{3}{2}\right)^2-\dfrac{49}{4}=\left(x+y+\dfrac{3}{2}-\dfrac{7}{2}\right)\left(x+y+\dfrac{3}{2}+\dfrac{7}{2}\right)=\left(x+y-2\right)\left(x+y+5\right)\)

\(\left(x+y\right)^2+3\left(x+y\right)-10\)

\(=\left(x+y\right)^2+5\left(x+y\right)-2\left(x+y\right)-10\)

\(=\left(x+y+5\right)\left(x+y-2\right)\)

2 tháng 9 2021

\(\left(x+y+z\right)^2+\left(x+y-z\right)^2-4z^2=\left(x+y+z\right)^2+\left(x+y-z-2z\right)\left(x+y-z+2z\right)=\left(x+y+z\right)^2+\left(x+y-3z\right)\left(x+y+z\right)=\left(x+y+z\right)\left(x+y+z+x+y-3z\right)=\left(x+y+z\right)\left(2x+2y-2z\right)=2\left(x+y+z\right)\left(x+y-z\right)\)

Ta có:

 (x + y + z)2 + (x + y – z)2 – 4z2

\(=\left(x+y-z\right)^2+\left(x+y-z\right)\left(x+y+3z\right)\)

\(=\left(x+y-z\right)\left(x+y+3z+x+y-z\right)\)

\(=2\left(x+y-z\right)\left(x+y+z\right)\)

\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+24y^4+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\)

12 tháng 9 2021

\(=x\left[x^2\left(x-y\right)^2-36y^2\right]\\ =x\left[x\left(x-y\right)-6y\right]\left[x\left(x-y\right)+6y\right]\\ =x\left(x^2-xy-6y\right)\left(x^2-xy+6y\right)\)