K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

a) x^7+x^2 +1 =x^7 - x^4+x^4 +x^2+1

                       = (x^7 - x^4) +[ (x^2)^2 +x^2 +1]

                        = x^4(x^3 -1)+(x^2 - 1)

                       = x^4 ( x-1)(x^2 +x +1)+ (x-1)(x+1)

                       = (x-1)[ x^4( x^2+x+1)+(x+1)]

                       = (x-1)(x^6 +x^5+x^4+x+1)

b) x^8 +x+1 = x^8 -x^2+x^2 +x+1

                    = (x^8-x^2) +(x^2 +x+1)

                    =x^2(x^6 -1) +(x^2+x+1)

                    =x^2[ (x^3)^2 -1)+(x^2+x+1)

                    = x^2 (x^3-1)(x^3+1) +(x^2 +x+1)

                     = x^2(x-1)(x^2+x+1)(x^3+1) +(x^2 +x+1)

                    = (x^2+x+1)[ x^2(x-1)(x^3+1) +1]

15 tháng 9 2021

\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)

10 tháng 10 2021

a) \(4\left(x+1\right)^3-x-1=4\left(x+1\right)^3-\left(x+1\right)=\left(x+1\right)\left[4\left(x+1\right)^2-1\right]=\left(x+1\right)\left[2\left(x+1\right)-1\right]\left[2\left(x+1\right)+1\right]=\left(x+1\right)\left(2x+1\right)\left(2x+3\right)\)

b) \(5x\left(x-3\right)+\left(3-x\right)^2-\left(x-3\right)=5x\left(x-3\right)+\left(x-3\right)^2-\left(x-3\right)=\left(x-3\right)\left(5x+x-3-1\right)=\left(x-3\right)\left(6x-4\right)=2\left(x-3\right)\left(3x-2\right)\)

c) \(9x^2y^3-3x^4y^2-6x^3y^2+16xy^4=xy^2\left(9xy-3x^3-6x^2+16y^2\right)\)

a: \(=\left(x+1\right)\left(x^2-x+1\right)+5x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+1\right)\)

15 tháng 11 2021

a) \(=\left(2x-1\right)^2\)

b) \(=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)

15 tháng 11 2021

a. \(4x^2-4x+1=\left(2x\right)^2-2x.2.1+1^2=\left(2x-1\right)^2\)

b. \(xy^2-x^3+2x^2-x=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x^2-2x+1\right)\right]=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)

b) Ta có: \(x^3-x^2y-xy^2+y^3\)

\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)^2\)

25 tháng 8 2021

a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)

b) \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\Leftrightarrow1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)-25=0\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\Leftrightarrow\left(x+y+1+xy\right)^2-25=0\Leftrightarrow\left(x+y+xy-24\right)\left(x+y+xy+26\right)=0\)

 

a: Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

21 tháng 12 2021

a)\(=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1+y\right)\left(x+1-y\right)\)

b)\(=\left(x+9\right)^2-\left(6x\right)^2=\left(x+9-6x\right)\left(x+9+6x\right)=\left(-5x+9\right)\left(7x+9\right)\)

c)\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\\ =\left(x-y+z-t\right)\left(x-y-z+t\right)\)

 

21 tháng 12 2021

a: =(x+1-y)(x+1+y)

16 tháng 10 2021

a,x^2-x-y^2-y

=x^2-y^2-(x+y)

=(x-y).(x+y)-(x+y)

=(x+y).(x-y-1)

b, x^2-2xy+y^2-z^2

=(x^2-2xy+y^2)-z^2

=(x-y)^2-z^2

=(x-y-z)(x-y+z)

c,5x-5y+ax-ay( đề bài ở đây phải là -ay ms tính đc)

=(5x-5y)+(ax-ay)

=5(x-y)+a(x-y)

=(x-y).(5+a)

d,a^3-a^2.x-ay+xy

=(a^3-a^2x)-(ay-xy)

=a^2(a-x)-y(a-x)

=(a-x)(a^2-y)

e,4x^2-y^2+4x+1

={(2x)^2+4x+1}-y^2

=(2x+1)^2-y^2

=(2x+1+y^2)(2x+1-y^2)

f,x^3-x+y^3-y

=(x^3+y^3)-(x+y)

=(x+y)(x^2-xy+y^2)-(x+y)

=(x+y)(x^2-xy+y^2-1)

 

                     

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)