Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử:
\(36-12x+x^2\)
\(=36-6x-6x+x^2\)
\(=\left(36-6x\right)-\left(6x-x^2\right)\)
\(=6\left(6-x\right)-x\left(6-x\right)\)
\(=\left(6-x\right)\left(6-x\right)=\left(6-x\right)^2\)
=x3(x+2)-13x2+12x-26x+24
=x3(x+2)-x(13x-12)-2(13x-12)
=x3(x+2)-(13x-12)(x+2)
=(x+2)(x3-x-12x+12)
(x+2)[(x2-1)-12(x-1)]
=(x+2)[x(x-1)(x+1)-12(x-1)]
=(x+2)(x-1)[x(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x(x-3)+4(x+3)]
=(x+2)(x-1)(x-3)(x+4)
trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!
\(=2x^4-6x^3-x^3+3x^2-5x^2+15x-2x+6\)
\(=2x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(2x^3-x^2-5x-2\right)\)
\(=\left(x-3\right)\left(2x^3-4x^2+3x^2-6x+x-2\right)\)
\(=\left(x-3\right)\left[2x^2\left(x-2\right)+3x\left(x-2\right)+\left(x-2\right)\right]\)
\(=\left(x-3\right)\left(x-2\right)\left(2x^2+3x+1\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(2x+1\right)\)
câu a đặt chung x ra là xong
câu b
x^3 + 3x^2 - 7x^2 - 21x + 9x+ 27 còn lại tự làm nhé
a) x3 - 2x2 + x - xy2
= x (x2 - 2x + 1 - y2)
= x [(x2 - 2x + 1) - y2]
= x [(x - 1)2 - y2]
= x [(x - 1) + y] [(x - 1) - y]
= x (x - 1 + y) (x - 1 - y)
b) x3 - 4x2 - 12x + 27
= (x3 + 27) - (4x2 + 12x)
= (x3 + 33) - 4x (x + 3)
= (x + 3) (x2 - 3x + 32) - 4x (x + 3)
= (x + 3) [(x2 - 3x + 9) - 4x]
= (x + 3) (x2 - 3x + 9 - 4x)
= (x + 3) (x2 - 7x + 9)
#Học tôt!!!
~NTTH~
\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)
\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)
\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)
\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)
\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)
a) = (x3 +33) -4x(x+3)
= (x+3)(x2 -3x+9-4x)
= (x+3)(x2 - 7x +9)
a) 12x3 + 4x2 + 9x + 3 = 4x2(3x + 1) + 3(3x + 1) = (4x2 + 3)(3x + 1)
b) x3 + 2x2 - x - 2 = x2(x + 2) - (x + 2) = (x2 - 1(x + 2) = (x - 1)(x + 1)(x + 2)
c) a3 + (a - b)3 = (a + a - b)[a2 - a(a - b) + (a - b)2] = (2a - b)(a2 - a2 + ab + a2 - 2ab + b2)
= (2a - b)(a2 - ab + b2)
a) 12x3 + 4x2 + 9x + 3
= 4x2(3x + 1) + 3(3x + 1)
= (4x2 + 3)(3x + 1)
b) x3 + 2x2 - x - 2
= x2(x + 2) - (x + 2)
= (x2 - 1)(x + 2)
c) a3 + (a - b)3
= a3 - a2(a - b) + a(a - b)2 + (a - b)a2 - (a - b)2a + (a - b)3
= a[(a2 - a(a - b) + (a - b)2] + (a - b)[a2 - a(a - b) + (a - b)2]
= (a + a - b)[(a2 - a(a - b) + (a - b)2]
Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)
a) \(x^2-2x-15\)
\(\Leftrightarrow x^2-2x+1-16\)
\(\Leftrightarrow\left(x-1\right)^2-4^2\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\)
\(a,x^2-2x-15=\left(x^2-2x+1\right)-16.\)
\(=\left(x-1\right)^2-4^2\)
\(=\left(x-5\right)\left(x+3\right)\)