K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

\(=4a^3+22a-24=2\left(2a^3+11a-12\right)\)

a) Ta có: \(a^2-b^2-5a+5b\)

\(=\left(a-b\right)\left(a+b\right)-5\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-5\right)\)

b) Ta có: \(a^2-b^2-3ab^2-3a^2b\)

\(=\left(a-b\right)\left(a+b\right)-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a-b-3ab\right)\)

a) Ta có: \(x^2-2xy+y^2-2x+2y\)

\(=\left(x-y\right)^2-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2-4x+4-x^2y+2xy\)

\(=\left(x-2\right)^2-xy\left(x-2\right)\)

\(=\left(x-2\right)\left(x-2-xy\right)\)

18 tháng 11 2021

x nha mình lộn ạ

 

18 tháng 11 2021

thấy đề sai sai sao ý

5 tháng 12 2021

\(4\left(x+2\right)\left(x+3\right)\)

5 tháng 12 2021

phân tích rõ hơn được ko ạ ?

1 tháng 12 2021

\(=x^3-3x^2+6x^2-18x+8x-24\\ =\left(x-3\right)\left(x^2+6x+8\right)\\ =\left(x-3\right)\left(x^2+2x+4x+8\right)\\ =\left(x-3\right)\left(x+2\right)\left(x+4\right)\)

1 tháng 12 2021

\(x^3+3x^2-10x-24=\left(x^3-3x^2\right)+\left(6x^2-18x\right)+\left(8x-24\right)=x^2\left(x-3\right)+6x\left(x-3\right)+8\left(x-3\right)=\left(x-3\right)\left(x^2+6x+8\right)=\left(x-3\right)\left[\left(x^2+2x\right)+\left(4x+8\right)\right]=\left(x-3\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=\left(x-3\right)\left(x+2\right)\left(x+4\right)\)

1 tháng 10 2021

\((x-1)(x-3)(x+8)\)

 

1 tháng 10 2021

\(x^3+4x^2-29x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]\)

\(=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)

NV
1 tháng 1

Đa thức đã cho không phân tích thành nhân tử được

2 tháng 1

*Đoán nghiệm sử dụng tính chất của đa thức:

 Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).

 Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\)\(q|1\) \(\Rightarrow q=1\).

 Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

 Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.

 * Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:

 \(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)