\(2x^4-10x^3+3x^2-3x+2\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

\(1,9x^3-3x^2+3x-1\)

\(=3x^2.\left(3x-1\right)+\left(3x-1\right)\)

\(=\left(3x^2+1\right).\left(3x-1\right)\)

\(4,x^4-x^3-10x^2+2x+4\)

\(=x^4-3x^3-2x^2+2x^3-6x^2-4x-2x^2-6x-4\)

\(=x^2.\left(x^2-3x-2\right)+2x.\left(x^2-3x-2\right)-2.\left(x^2-3x-2\right)\)

\(=\left(x^2+2x-2\right).\left(x^2-3x-2\right)\)

25 tháng 12 2018

1, =3x(3x-1)+(3x-1)

=(3x-1)(3x+1)

1 tháng 11 2018

a,\(x^3-3x^2+3x-1-y^3=\left(x^3-1\right)-\left(3x^2-3x\right)-y^3\)

\(=\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)-y^3\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-y^3\)

\(=\left(x-1\right)^3-y^3=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)

....

1 tháng 11 2018

\(8x^2+10x-3\)

\(=8x^2+12x-2x-3\)

\(=4x.\left(2x+3\right)-\left(2x+3\right)\)

\(=\left(4x-1\right).\left(2x+3\right)\)

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left(x-1\right)^2+\left(x-1\right).y+y^2\)

ps: lớp 7, ko chắc 

29 tháng 1 2019

\(x^4+2x^3+3x^2+2x+1.\)

\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left(x^2+x+1\right)\)

\(=\left(x+1\right)^2\left(x+1\right)^2\)

\(=\left(x+1\right)^4\)

29 tháng 1 2019

@wi

\(x^2+x+1=\left(x+1\right)^2???\)

\(x^2+2x+1=\left(x+1\right)^2\)chứ

13 tháng 11 2016

câu này mà ko biết làm à

13 tháng 11 2016

câu này mà ko biết làm

16 tháng 10 2018

lấy máy tính bấm nghiệm ra

28 tháng 10 2016

Làm tính nhân

(4x3+3xy2-2y3).(3x2-5xy-6y2)

=12x5+12y5-20x4y-36x2y3-8xy4

Phân tích đa thức thành nhân tử

10x3+5x2y-10x2y-10xy2+5y3

=10x3-5x2y-10xy2+5y3

=5(2x3-x2y-2xy2+y3-)

26 tháng 8 2020

Sửa lại đề là: \(3x^2+10x+3\)

\(=3x^2+9x+x+3\)

\(=\left(3x^2+9x\right)+\left(x+3\right)\)

\(=3x.\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right).\left(3x+1\right)\)

26 tháng 8 2020

\(3x^2+10x+3\)

\(=3x^2+9x+x+3\)

\(=3x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(3x+1\right)\)

18 tháng 2 2017

\(4x^4+2x^3-8x^2+3x+9\)

\(=4x^4+4x^3-2x^3-2x^2-6x^2-6x+9x+9\)

\(=\left(x+1\right)\left(4x^3-2x^2-6x+9\right)\)

\(=\left(x+1\right)\left(4x^3+6x^2-8x^2-12x+6x+9\right)\)

\(=\left(x+1\right)\left(2x+3\right)\left(2x^2-4x+3\right)\)

3 tháng 9 2016

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)