K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

2x3-x2+2x+12=2x3+3x2-4x2-6x+8x+12=x2(2x+3)-2x(2x+3)+4(2x+3)=(2x+3)(x2-2x+4)

23 tháng 9 2017

a) x3-2x2-x+2

=x(x2-1)+2(-x2+1)

=x(x2-1)-2(x2-1)

=(x2-1)(x-2)

b)

x2+6x-y2+9

=x2+6x+9-y2

=(x+3)2-y2

=(x+3-y)(x+3+y)

27 tháng 9 2015

x2 + 1 - y2 - 2x = (x2 - 2x + 1) - y2 = (x - 1)2 - y2 = (x - 1 - y).(x - 1 + y)

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

17 tháng 8 2016
Nếu x^2 + x + 1 mà phân tích được thành nhân tử thì nó phải có dạng (ax+b)(cx+d)=acx^2 + (ad + bc)x + bd = x^2 + x + 1 Từ đó ta có hệ ac = 1(1) và ad +bc = 1(2) và bd = 1(3) Thế a=1/c và b= 1/d vào (2) ta được d/c + c/d = 1(4) Đặt c/d = u thì (4) <=> u + 1/u = 1<=> (u -1/2)^2 + 3/4 =0 Điều này là vô lý vì vế trái luôn >0 với môn u Vậy x^2 + x + 1 không thể phân tích thành nhân tử được
17 tháng 8 2016

cái này sao mà phân tích dc

5 tháng 9 2016

x4+2x3+5x2+4x-12

=x(x3+2x2+5x+4)-12

5 tháng 9 2016

Có thể chi tiết ra ko bạn, mình cảm ơn.

2 tháng 8 2018

\(x^4+4x^2-5\)

\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-9\)

\(=\left(x^2+2\right)^2-9\)

\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

2 tháng 8 2018

a)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2-5\right)\left(x^2-1\right)\)

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)