Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
2) \(x^2-x-6=\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
3) \(x^2+7x+12=\left(x^2+3x\right)+\left(4x+12\right)=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(3x^2+x-2=3x^2-2x+3x-2=x\left(3x-2\right)+\left(3x-2\right)=\left(x+1\right)\left(3x-2\right)\)
\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(x^2+2xy-15y^2=x^2-3xy+5xy-15y^2=x\left(x-3y\right)+5y\left(x-3y\right)=\left(x+5y\right)\left(x-3y\right)\)
13: =x(a^3-1)-b(a-1)
=x(a-1)(a^2+a+1)-b(a-1)
=(a-1)(a^2x+a*x+x-b)
12: =(x-y)(x+y)-(x-y)
=(x-y)(x+y-1)
10: =3(x^2-4y^2)
=3(x-2y)*(x+2y)
7: =x^2-x-5x+5=(x-1)(x-5)
8: =x^2+3x+4x+12=(x+3)(x+4)
9: =2x^2-6x-x+3=(x-3)(2x-1)
1: Đa thức này ko phân tích được nha bạn
2: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(x+7\right)\)
3: \(x^2-6x-16\)
\(=x^2-8x+2x-16\)
\(=x\left(x-8\right)+2\left(x-8\right)\)
\(=\left(x-8\right)\left(x+2\right)\)
4: \(4x^2-8x+3\)
\(=4x^2-2x-6x+3\)
\(=2x\left(2x-1\right)-3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)
5: \(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
Phân tích đa thức thành nhân tử(tách hạng tử)
1)x^2+2x-3=x^2-x+3x-3=x(x-1)+3(x-1)=(x-1)(x+3)
2)x^2-5x+6=x^2-2x-3x+6=x(x-2)-3(x-2)=(x-2)(x-3)
3)x^2+7x+12=(x+3)(x+4)
4)x^2-x-12=(x-4)(x+3)
5)3x^2+3x-36=3[(x-3)(x+4)]
6)5x^2-5x-10=5[(x-2)(x+1) ]
7)3x^2-7x-6=(x-3)(3x+2)
8)4x^2+4x-3=4x^2+6x-2x-3=(2x-1)(2x+3)
9)8x^2-2x-3=8x^2+4x-6x-3=(4x-3)(2x+1)
1: \(x^2+2x-3=\left(x+3\right)\left(x-1\right)\)
2: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
3: \(x^2+7x^2+12x=4x\left(2x+3\right)\)
4: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
5: \(3x^2+3x-36=3\left(x^2+x-12\right)=3\left(x+4\right)\left(x-3\right)\)
6: \(5x^2-5x-10=5\left(x^2-x-2\right)=5\left(x-2\right)\left(x+1\right)\)
(x^2+3x+2)(x^2+7x+12)
=(x2+x+2x+2)(x2+3x+4x+12)
=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]
=(x+1)(x+2)(x+3)(x+4)
(x^2+3x+2)(x^2+7x+12)+1
=(x2+x+2x+2)(x2+3x+4x+12)+1
=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]+1
=(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
=(x2+5x+4)[(x2+5x+4)+2]+1
=(x2+5x+4)2+2(x2+5x+4)+1
=(x2+5x+4+1)2
=(x2+5x+5)2
(x^2+3x+2)(x^2+7x+12)-24
=(x2+x+2x+2)(x2+3x+4x+12)-24
=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]-24
=(x+1)(x+2)(x+3)(x+4)-24
=(x+1)(x+4)(x+2)(x+3)-24
=(x2+5x+4)(x2+5x+6)-24
Đặt t=x2+5x+4 ta được:
t.(t+2)-24
=t2+2t-24
=t2-4t+6t-24
=t.(t-4)+6.(t-4)
=(t-4)(t+6)
thay t=x2+5x+4 ta được:
(x2+5x+4-4)(x2+5x+4+6)
=(x2+5x)(x2+5x+10)
=x.(x+5)(x2+5x+10)
Vậy (x^2+3x+2)(x^2+7x+12)-24=x.(x+5)(x2+5x+10)
1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)