K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

a) đặt A=(x+1)(x+3)(x+5)(x+7)+ 15

=>A=(x+ 1)(x+7)(x+3)(x+5) + 15

= (x2 +8x+7)(x2 +8x+15) + 15

đặt y= x2+8x+11

=> A= (y-4)(y+4)+15 = y2-16+15 = y2-1

=(y-1)(y+1) = (x2+8x +10)(x2+8x+12)

b) A= (x2+8x +10)(x2+8x+12) \(⋮\) (x2+8x +10)

=> A=A=(x+1)(x+3)(x+5)(x+7)+ 15 \(⋮\) (x2+8x +10)

9 tháng 7 2018

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html

tí mình gửi qua cho 

học tốt

10 tháng 9 2019

\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)

Đặt \(x^2+8x+11=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15\)

\(=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:

\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

19 tháng 10 2021

1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Ta đặt: \(x^2+8x+7=n\)

\(=n.\left(n+8\right)+15\)

\(=n^2+8n+15\)

\(=n^2+3n+5n+15\)

\(=\left(n^2+3n\right)+\left(5n+15\right)\)

\(=n.\left(n+3\right)+5.\left(n+3\right)\)

\(=\left(n+3\right).\left(n+5\right)\)

\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)

\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

19 tháng 10 2021

2) \(x^2-2xy+3x-3y-10+y^2\)

\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)

Ta đặt: \(x-y=n\)

\(=n^2+3n-10\)

\(=n^2-2n+5n-10\)

\(=\left(n^2-2n\right)+\left(5n-10\right)\)

\(=n.\left(n-2\right)+5.\left(n-2\right)\)

\(=\left(n-2\right).\left(n+5\right)\)

\(=\left(x-y-2\right).\left(x-y+5\right)\)

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

12 tháng 8 2016

a) Đăt \(x^2+x=t\) khi đó bt trở thành:

 \(t^2-2t-15=t^2+3t-5t-15=t\left(t+3\right)-5\left(t+3\right)\\ =\left(t+3\right)\left(1-5\right)=\left(x^2+x+3\right)\left(x^2+x-5\right)\)

 

 

12 tháng 8 2016

lm 2 câu kia đi

a)x^5+x+1

=x5-x2+x2+x+1

=x2(x3-1)+x2+x+1

=x2(x+1)(x2+x+1)+x2+x+1

=(x2+x+1)(x3+x2+1)

b)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt x2+8x+7=t

=> t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+10)(x2+8x+12)