Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html
tí mình gửi qua cho
học tốt
\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)
Đặt \(x^2+8x+11=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15\)
\(=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:
\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Ta đặt: \(x^2+8x+7=n\)
\(=n.\left(n+8\right)+15\)
\(=n^2+8n+15\)
\(=n^2+3n+5n+15\)
\(=\left(n^2+3n\right)+\left(5n+15\right)\)
\(=n.\left(n+3\right)+5.\left(n+3\right)\)
\(=\left(n+3\right).\left(n+5\right)\)
\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)
\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
2) \(x^2-2xy+3x-3y-10+y^2\)
\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)
Ta đặt: \(x-y=n\)
\(=n^2+3n-10\)
\(=n^2-2n+5n-10\)
\(=\left(n^2-2n\right)+\left(5n-10\right)\)
\(=n.\left(n-2\right)+5.\left(n-2\right)\)
\(=\left(n-2\right).\left(n+5\right)\)
\(=\left(x-y-2\right).\left(x-y+5\right)\)
a) 3x2 – 7x + 2
\(=3x^2-6x-x+2\)
\(=\left(3x^2-6x\right)-\left(x-2\right)\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) a(x2 + 1) – x(a2 + 1)
\(=ax^2+a-\left(a^2x+x\right)\)
\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)
.......?
a) Ta có: \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=x^2a+a-a^2x-x\)
\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)
\(=xa\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(xa-1\right)\)
c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
a) Đăt \(x^2+x=t\) khi đó bt trở thành:
\(t^2-2t-15=t^2+3t-5t-15=t\left(t+3\right)-5\left(t+3\right)\\ =\left(t+3\right)\left(1-5\right)=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
a)x^5+x+1
=x5-x2+x2+x+1
=x2(x3-1)+x2+x+1
=x2(x+1)(x2+x+1)+x2+x+1
=(x2+x+1)(x3+x2+1)
b)(x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
Đặt x2+8x+7=t
=> t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+10)(x2+8x+12)
a) đặt A=(x+1)(x+3)(x+5)(x+7)+ 15
=>A=(x+ 1)(x+7)(x+3)(x+5) + 15
= (x2 +8x+7)(x2 +8x+15) + 15
đặt y= x2+8x+11
=> A= (y-4)(y+4)+15 = y2-16+15 = y2-1
=(y-1)(y+1) = (x2+8x +10)(x2+8x+12)
b) A= (x2+8x +10)(x2+8x+12) \(⋮\) (x2+8x +10)
=> A=A=(x+1)(x+3)(x+5)(x+7)+ 15 \(⋮\) (x2+8x +10)