Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(x + 2)(x + 3)(x + 4)(x + 5) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
= (x2 + 5x + 2x + 10)(x2 + 4x + 3x + 12) - 24
= (x2 + 7x + 10)(x2 + 7x + 12) - 24
Đặt x2 + 7x + 10 = k
=> k(k + 2) - 24 = k2 + 2k - 24 = k2 + 6x - 4x - 24
= k(k + 6) - 4(k + 6)
= (k - 4)(k + 6)
=> (x + 2)(x + 3)(x + 4)(x + 5) - 24
= (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)
= (x2 + 7x + 6)(x2 + 7x + 16)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(x^2+7x+11=t\)thay vào (1) ta được:
\(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:
\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)
\(=\left[x\left(x+1\right)+6\left(x+1\right)\right]\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Let \(t=x^2+7x+10\) we have:
\(=t\left(t+2\right)-24=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
(x+2).(x+3).(x+4).(x+5)−24
=(x2+7x+10).(x2+7x+12)−24
=(x2+7x+10).(x2+7x+10+2)−24
Đặt x2+7x+10=t, ta có
t.(t+2)−24
=t2+2t−24
=t2+2t+1−25
=(t−1)2−25
=(t−1−5)(t−1+5)
=(t−6)(t+4)
=(x2+7x+10−6)(x2+7x+10+4)
(x2+7x+4)(x2+7x+14)
P/s tham khảo nha
\(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)
\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+10+2\right)-24\)
Đặt \(x^2+7x+10=t\), ta có
\(t.\left(t+2\right)-24\)
\(\Leftrightarrow t^2+2t-24\)
\(\Leftrightarrow t^2+2t+1-25\)
\(\Leftrightarrow\left(t-1\right)^2-25\)
\(\Leftrightarrow\left(t-1-5\right)\left(t-1+5\right)\)
\(\Leftrightarrow\left(t-6\right)\left(t+4\right)\)
\(\Rightarrow\left(x^2+7x+10-6\right)\left(x^2+7x+10+4\right)\)
\(\Leftrightarrow\left(x^2+7x+4\right)\left(x^2+7x+14\right)\)
P/s tham khảo nha
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(A=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=y\)
\(\Rightarrow\)\(A=y.\left(y+2\right)-24\)
\(A=y^2+2y+1-25\)
\(A=\left(y+1\right)^2-5^2\)
\(A=\left(y+1-5\right)\left(y+1+5\right)\)
\(A=\left(y-4\right)\left(y+6\right)\)
\(\Rightarrow A=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)
\(A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)
\(A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)
Đặt \(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(B=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x-1=a\)
\(\Rightarrow B=a.\left(a+3\right)-4\)
\(B=a^2+3a-4\)
\(B=\left(a^2-a\right)+\left(4a-4\right)\)
\(B=a.\left(a-1\right)+4.\left(a-1\right)\)
\(B=\left(a-1\right)\left(a+4\right)\)
\(\Rightarrow B=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= x4 + 10x3 + 35x2 + 50x + 24 - 24
= x4 + 10x3 + 35x2 + 50x
( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24
= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24
Đặt t = x2 + 5x + 5
=> ( t - 1 ). ( t + 1 ) - 24
= t2 - 1 - 24
= t2 - 25
= ( t - 5 ). ( t + 5 )
= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )
= ( x2 + 5x ) . ( x2 + 5x + 10 )
= x. ( x + 5 ) . ( x2 + 5x + 10 )
`(x+3)^4+(x+5)^4-2`
`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`
`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`
`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`
`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`
`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`
`=(x+4)(2x^3+24x^2+108x+176)`
Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???
a: \(5x\left(2x+3\right)+6x+9\)
\(=5x\left(2x+3\right)+\left(6x+9\right)\)
\(=5x\left(2x+3\right)+3\left(2x+3\right)\)
\(=\left(2x+3\right)\left(5x+3\right)\)
b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+4\right)\left(3x+48+5\right)\)
=(x+4)(3x+53)
Đặt A=(x + 2) (x + 3) (x + 4) (x + 5) - 24 A=(x + 2) (x + 3) (x + 4) (x + 5) - 24
= (x + 2) (x + 5) (x + 3) (x + 4) - 24 = (x + 2) (x + 5) (x + 3) (x + 4) - 24
=(x2+7x+10)(x2+7x+12)−24=(x2+7x+10)(x2+7x+12)−24
Đặt a=x2+7x+11a=x2+7x+11 thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x2+7x+11−5)(x2+7x+11+5)A=(x2+7x+11−5)(x2+7x+11+5)
=(x^2+7x+6)(x^2+7x+16)
(x+1)(x+2)(x+3)(x+4)−24
=[(x+1)\(^2\)+3(x+1)][x\(^2\)+5x+6]−24
=[(x+1)\(^2\)+3(x+1)][(x+1)\(^2\)+3x+5]−24
=[(x+1)\(^2\)+3(x+1)][(x+1)\(^2\)+3(x+1)+2]−24
=[(x+1)\(^2\)+3(x+1)]\(^2\)+2[(x+1)\(^2\)+3(x+1)]\(^2\)−24
=[(x+1)\(^2\)+3(x+1)+1]\(^2\)−25
=[(x+1)\(^2\)+3(x+1)−4][(x+1)\(^2\)+3(x+1)+6]
=(x\(^2\)+5x)(x\(^2\)+5x+10)