Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(=\left(4-a-b\right)\left(4+a-b\right)\), đằng trước là dấu trừ thì khi bỏ ngoặc phải đổi dấu chứ nhỉ :0
b) Ta có: \(x^3-x^2y-xy^2+y^3\)
\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)^2\)
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
A ) xy(z+y)+yz(y+z)+zx(z+x)
=y.[x(z+y)+z(y+z)]+zx(z+x)
=y.(xz+xy+zy+z2)+zx(z+x)
=y.(xz+z2+xy+zy)+zx(z+x)
=y.[z.(z+x)+y.(z+x)]+zx(z+x)
=y.(z+x)(z+y)+zx(z+x)
=(z+x)[y(z+y)+zx]
=(z+x)(yz+y2+zx)
B )xy(x+y)-yz(y+z)-zx(z-x)
=y.[x(x+y)-z(y+z)]-zx(z-x)
=y.(x2+xy-zy-z2)-zx(z-x)
=y.(x2-z2+xy-zy)-zx(z-x)
=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)
=y.(x-z)(x+z+y)+zx(x-z)
=(x-z)[y(x+z+y)+zx]
=(x-z)(yx+yz+y2+zx)
=(x-z)(yx+zx+yz+y2)
=(x-z)[x.(y+z)+y.(y+z)]
=(x-z)(y+z)(x+y)
b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)
a) = (xyz+xy) +(z+1) +(yz+zx)+(x+y)
= xy(z+1) +(z+1)+z(x+y)+(x+y)
= (z+1)(xy+1)+(x+y)(Z+1)
=(z+1)(xy+1+x+y)
dễ mà bn
mk bk lm mà lm biếng gõ qá