Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{2}x\right)^6-\left(5y\right)^3\)
\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)
\(\left(\frac{1}{4}x^2-5y\right)\left[\left(\frac{1}{4}x^2\right)^2+\left(\frac{1}{4}x^2\right).5y+25y^2\right]\)
\(b,27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.2.\left(3a\right)^2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
\(c,x^6-x^6\)
\(=0\)
\(d,10x-25-x^2\)
\(=-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
1. \(\left(x+1\right)^3-125\)
\(=\left(x+1\right)^3-5^3\)
\(=\left(x+1-5\right).\left[\left(x+1\right)^2+\left(x+1\right).5+5^2\right]\)
2. \(\left(x+4\right)^3-64\)
\(=\left(x+4\right)^3-4^3\)
\(=\left(x+4-4\right).\left[\left(x+4\right)^2+\left(x+4\right).4+4^2\right]\)
3. \(x^3-\left(y-1\right)^3\)
\(=(x^3-y+1).\left[\left(x^2\right)+x.\left(y+1\right)+\left(y+1\right)^2\right]\)
\(\)4. \(\left(a+b\right)^3-c^3\)
\(=\left[\left(a+b\right)-c\right].\left[\left(a+b\right)^2+\left(a+b\right).c+c^2\right]\)
5. \(125-\left(x+2\right)^3\)
\(=5^3-\left(x+2\right)^3\)
\(=\left(5-x-2\right).\left[5^2+5.\left(x+2\right)+\left(x+2\right)^2\right]\)
6. \(\left(x+1\right)^3+\left(x-2\right)^3\)
\(=\left[\left(x+1\right)+\left(x-2\right)\right].\left[\left(x+1\right)^2-\left(x+1\right).\left(x-2\right)+\left(x-2\right)^2\right]\)
3)(9a)2-(5a-3b)2
= (9a-5a+3b)(9a+5a-3b)
= (4a+3b)(14a-3b)
\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)
\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)
\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)
1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
b) \(64x^3+1=\left(4x+1\right)\left(16x^2-4x+1\right)\)\
c) \(x^3y^6z^9-125=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z+25\right)\)
d) \(27x^6-8x^3=x^3\left(27x^3-8\right)=x^3\left(3x-2\right)\left(9x^2+6x+4\right)\)
e) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
64x3 + 1
= ( 4x )3 + 1
= ( 4x + 1 ) ( 16x2 - 4x + 1 )
Hằng đẳng thức 6 : A3 + B3
27x6 - 8x3
= ( 3x2)3 + ( 2x )3
= ( 3x + 2x ) ( 9x2 - 6x + 4x2 )
HĐT 6
1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)
Bạn tự lm tiếp.AD HĐT số (7)
2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)
AD HĐT số (7).Tự lm tiếp
3)\(x^6+1=\left(x^2\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
4)\(x^9+1=\left(x^3\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)
AD HĐT số (3).Tự lm tiếp
6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
AD HĐT số (4)
7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)
AD HĐT số (5)
8)\(27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
AD HĐT số (5)