Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2-22xy-4x+8y+7y^2+1\)
Giả sử:
\(A=\left(3x+ay+b\right)\left(x+cy+d\right)\)
\(=3x^2+3cxy+3dx+axy+acy^2+ady+bx+bcy+bd\)
\(=3x^2+acy^2+\left(3c+a\right)xy+\left(3d+b\right)x+\left(ad+bc\right)y+bd\)
Ta có:
\(\begin{cases}\begin{matrix}ac=-7\\3c+a=-22\\3d+b=-4\\ad+bc=8\end{matrix}\\bd=1\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-1\\c=-7\\d=-1\end{cases}\)
Vậy \(A=\left(3x-y-1\right)\left(x-7y-1\right)\)
Chúc bạn học tốt ^^
(x^2-x+2)^2+(x-2)^2
= [(x^2-x+2)+(x-2)]^2-2[(x^2-x+2)*(x-2)] (áp dụng (a^2+b^2)=(a+b)^2-2ab
=(x^2)^2- 2((x^3-3x^2+4x-4)
=x^4-2x^3+6x^2-8x+8
giờ phân tích đa thức
x^4-2x^3+6x^2+8x-8
=(x^4-2x^3+2x^2)+(4x^2-8x+8) (cái này làm bài tập nhiêu nhìn ra nhanh)
=[x^2(x^2-2x+2)]+4(x^2-2x+2) dẹp luôn
=(x^2-2x+2)(x^2+4)
\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left[\left(x-2\right)\left(x+1\right)\right]^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x+1\right)^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+1\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)
a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có
a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]
mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab
(a + 1)(a + 2)(a + 3)(a + 4) + 1
= (a2 + 4a + a + 4)(a2 + 3a + 2a + 6) + 1
= (a2 + 5a + 4)(a2 + 5a + 6) + 1 (1)
Đặt a2 + 5a + 5 = b
=> a2 + 5a + 4 = b - 1
a2 + 5a + 6 = b + 1
(1) = (b - 1)(b + 1) + 1
= b2 - 1 + 1
= b2
= (a2 + 5a + 5)2
\(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left[\left(a+1\right).\left(a+4\right)\right].\left[\left(a+2\right).\left(a+3\right)\right]+1\)
\(=\left(a^2+4a+a+4\right).\left(a^2+2a+3a+6\right)+1=\left(a^2+5a+4\right).\left(a^2+5a+6\right)+1\)
Đặt : \(a^2+5a+5=b\) thì ta có :
\(\left(b-1\right).\left(b+1\right)+1=b^2-1+1=b^2\)
thay \(a^2+5a+5\) vào b . ta được :
\(b^2=\left(a^2+5a+5\right)^2\)
VẬy : \(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a^2+5a+5\right)^2\)
\(8x^3+12x^2y+6xy^2+y^3-z^3\)
\(=\left(2x+y\right)^3-z^3\)
\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)
a, 8a3 - 36a2 +54ab2 - 27b3
=(8a3-36a2b +54ab2 - 27b3)
=(2a-3b)2
=(2a-3b)(2a-3b)(2a-3b)
b, 8x3 + 12x2y + 6xy2 + y3 - z 3
=(8x3 + 12x2y + 6xy2 + y3) - z3
=(2x + y)3 - y3
=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2
= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2
a(b^3-c^3) +b(c^3-a^3)+c(a^3-b^3)
=> a(b-c)(b^2+bc+c^2)+bc^3-ba^3+ca^3-cb^3
=>a(b-c)(b^2+bc+c^2)-(cb^3-bc^3)-(ba^3-ca^3)
=>a(b-c)(b^2+bc+c^2)-bc(b-c)(b+c)-a^3(b-c)
=>(b-c)(ab^2+abc+ac^2-cb^2-bc^2-a^3)
=>(b-c)(
1: Xét tứ giác BHCK có
CH//BK
BH//CK
Do đó: BHCK là hình bình hành
Suy ra: Hai đường chéo BC và HK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
2: Gọi giao điểm của IH và BC là O
Suy ra: IH\(\perp\)BC tại O và O là trung điểm của IH
Xét ΔHIK có
O là trung điểm của HI
M là trung điểm của HK
Do đó: OM là đường trung bình của ΔHIK
Suy ra: OM//IK
hay BC//IK
mà BC\(\perp\)IH
nên IH\(\perp\)IK
Xét ΔHOC vuông tại O và ΔIOC vuông tại O có
OC chung
HO=IO
Do đó: ΔHOC=ΔIOC
Suy ra: CH=CI
mà CH=BK
nên CI=BK
Xét tứ giác BCKI có IK//BC
nên BCKI là hình thang
mà CI=BK
nên BCKI là hình thang cân
mũ 2 hay 3
Mũ 2 bn ui!!!!