K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

a^3+b^3+c^3−3abc
=a^3+3ab(a+b)+b^3+c^3−3abc−3ab(a+b)
=(a+b)^3+c^3−3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2−ab−ac+c^2)−3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)

5 tháng 8 2015

     a^3 + b^3 + c^3 - 3abc 

=  ( a+ b)^3 - 3ab ( a+ b) - 3abc 

= ( a+ b +c )^3 - 3 ( a + b ).c(a + b +c ) -3ab (a+ b ) -3abc

= ( a+ b +c)^3 - 3(a+b).c(a+b+c) - 3ab(a+b+c)

= ( a+  b +c )[ ( a + b +c )^2 - 3(a+b).c - 3ab ] 

= ( a+  b + c ) [ a^2 + 2ab + b^2 + 2bc+ c^2 +2 ac - 3ac - 3bc - 3ab )

= ( a + b + c)(a^2 + b^2 + c^2 -ab - bc- ca)

Tick đúng nha 

 

 

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

= (a- b)(b - c)(c - a)(a + b + c)

29 tháng 8 2017

16 tháng 3 2018

8 tháng 2 2018

c) a3 – b3 + 2b – 2a = (a – b)(a2 + ab + b2) – 2(a – b)

=(a – b)( a2 + ab + b2 – 2)

26 tháng 10 2021

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

\(=\left[a\left(b^3-c^3\right)-b\left(b^3-c^3\right)\right]-\left[b\left(a^3-b^3\right)-c\left(a^3-b^3\right)\right]\)

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

 

= (a- b)(b - c)(c - a)(a + b + c)

21 tháng 7 2021

A= (a+b+c)3-a3-b3-c3

  = a3+b3+c3+3(a+b)(a+c)(b+c)-a3-b3-c3

  = 3(a+b)(a+c)(b+c)

\(a^3-3a+3b-b^3\)

=\(\left(a^3-b^3\right)-\left(3a-3b\right)\)

=\(\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\)

=\(\left(a-b\right)\left(a^2+ab+b^2-3\right)\)

26 tháng 1 2019

a) (a-b)(b-c)(a-c).

b) (a-b)(b-c)(a - c)(a + b + c).

24 tháng 4 2019

a3 ( c - b2 ) + b3 ( a - c2 ) + c3 ( b - a2 ) + abc ( abc - 1 )

= a3c - a3b2 + b3a - b3c2 + c3b - c3a2 + a2b2c2 - abc

= a2b2c2 - b3c2 - ( a2c3 - bc3 ) - ( a3b2 - ab3 ) + ( a3c - abc )

= b2c2 . ( a2 - b ) - c3 ( a2 - b ) - ab2 ( a2 - b ) + ac ( a2 - b ) 

= ( a2 - b ) ( b2c2 - c3 - ab2 + ac )

= ( a2 - b ) ( b2 - c ) ( c2 - a )

20 tháng 9 2020

 .\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)

=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)

=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)

=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)