Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
\(=x+2\sqrt{xy}+y-9\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2-3^2\)
\(=\left(\sqrt{x}+\sqrt{y}-3\right)\left(\sqrt{x}+\sqrt{y}+3\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)
\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)
\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)
\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)
giúp mình câu khác được ko? câu này mình biết làm òi
\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)
Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:
\(\left(t-x\right)\left(t+x\right)-3x^2\)
\(=t^2-x^2-3x^2\)
\(=t^2-4x^2\)
\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:
\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)
\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)
\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)
\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)
\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)
\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)
\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)
\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)
\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)
\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)