Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
a) x^2 - 2xy + y^2 - xz + yz
= (x^2 - 2xy + y^2 ) - (xz + yz)
= (x - y)^2 - z(x + y)
= (x - y)(x - x + y)
c) x2 + 2xy + y2 – xz – yz = (x + y)2 – z(x + y) = (x + y)(x + y – z)
c) x2 + y2 + xz + yz + 2xy
= (x2 + 2xy + y2) + (xz + yz)
= (x + y)2 + z(x + y)
= (x + y)(x + y + z)
1) \(x^2-2xy+y^2-xz+yz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)
\(\Leftrightarrow\left(x-y\right)^2-z\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x-y-z\right)\)
2)\(x^2-y^2-x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)\)
\(a,x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
\(b,x^2-y^2-x+y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
\(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left[\left(x^2-2xy+y^2\right)-4^2\right]\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left[\left(x-y-4\right)\left(x-y+4\right)\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
\(a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)