K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

a)x^2-4xy+4y^2-4

=(x2-4xy+4y2)-4

=(x-2y)2-4

=(x-2y+2)(x-2y-2)

 

b)16-x^2+2xy-y^2

=16-(x2-2xy+y2)

=16-(x-y)2

=[4-(x-y)][4+(x-y)]

=(4-x+y)(4+x-y)

 

28 tháng 10 2021

a) \(x^2+2xy+y^2-4=\left(x+y\right)^2-2^2\)

\(=\left(x+y-2\right)\left(x+y+2\right)\)

b) \(x^2-y^2+x+y=\left(x-y\right)\left(x+y\right)+1\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+1\right)\)

c) \(y^2+x^2+2xy-16=x^2+2xy+y^2-16\)

\(=\left(x+y\right)^2-4^2=\left(x+y+4\right)\left(x+y-4\right)\)

15 tháng 9 2021

a) \(x^2-2xy+y^2-1=\left(x-y\right)^2-1=\left(x-y-1\right)\left(x-y+1\right)\)

b) \(9-x^2-2xy-y^2=9-\left(x^2+2xy+y^2\right)=9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)

c) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)

15 tháng 9 2021

a. x2 - 2xy + y2 - 1

= (x - y)2 - 12

= (x - y - 1)(x - y + 1)

b. 9 - x2 - 2xy - y2

= 32 - (x + y)2

= (3 - x - y)(3 + x + y)

c. 25 - x2 + 4xy - 4y2

= 52 - \(\left[x^2-4xy+\left(2y\right)^2\right]\)

= 52 - (x - 2y)2

= (5 - x + 2y)(5 + x - 2y)

22 tháng 10 2023

2:

a: \(x^2-12x+20\)

\(=x^2-2x-10x+20\)

=x(x-2)-10(x-2)

=(x-2)(x-10)

b: \(2x^2-x-15\)

=2x^2-6x+5x-15

=2x(x-3)+5(x-3)

=(x-3)(2x+5)

c: \(x^3-x^2+x-1\)

=x^2(x-1)+(x-1)

=(x-1)(x^2+1)

d: \(2x^3-5x-6\)

\(=2x^3-4x^2+4x^2-8x+3x-6\)

\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+4x+3\right)\)

e: \(4y^4+1\)

\(=4y^4+4y^2+1-4y^2\)

\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)

\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)

f; \(x^7+x^5+x^3\)

\(=x^3\left(x^4+x^2+1\right)\)

\(=x^3\left(x^4+2x^2+1-x^2\right)\)

\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)

\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)

\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)

h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)

\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)

\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-4\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)

\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)

\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)

i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)

\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)

\(=\left(x+2y-1\right)\left(x+2y-3\right)\)

j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)

\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)

18 tháng 10 2021

\(a,\Rightarrow\left(x-3-5+2x\right)\left(x-3+5-2x\right)=0\\ \Rightarrow\left(3x-8\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{8}{3}\end{matrix}\right.\\ b,=\left(x+y\right)^2-\left(x-2y\right)^2\\ =\left(x+y-x+2y\right)\left(x+y+x-2y\right)=3y\left(2x-y\right)\\ c,=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

1: =(16x^2-8x+1)-y^2

=(4x-1)^2-y^2

=(4x-1-y)(4x-1+y)

2: =(x^2-2xy+y^2)-z^2

=(x-y)^2-z^2

=(x-y-z)(x-y+z)

3: =(x^2+4xy+4y^2)-16

=(x+2y)^2-4^2

=(x+2y-4)(x+2y+4)

4: =(x^2-4xy+4y^2)-16

=(x-2y)^2-4^2

=(x-2y-4)(x-2y+4)

10 tháng 12 2023

a) x² + 6x + 8

= x² + 2x + 4x + 8

= (x² + 2x) + (4x + 8)

= x(x + 2) + 4(x + 8)

= (x + 2)(x + 4)

b) 3x² - 2(x - y)² - 3y²

= (3x² - 3y²) - 2(x - y)²

= 3(x² - y²) - 2(x - y)²

= 3(x + y)(x - y) - 2(x - y)²

= (x - y)[3(x + y) - 2(x - y)]

= (x - y)(3x + 3y - 2x + 2y)

= (x - y)(x + 5y)

c) 4x² - 9y² + 4x - 6y

= (4x² - 9y²) + (4x - 6y)

= (2x - 3y)(2x + 3y) + 2(2x - 3y)

= (2x - 3y)(2x + 3y + 2)

d) x(x + 1)² + x(x - 5) - 5(x + 1)²

= [x(x + 1)² - 5(x + 1)²] + x(x - 5)

= (x + 1)²(x - 5) + x(x - 5)

= (x - 5)[(x + 1)² + x]

= (x - 5)(x² + 2x + 1 + x)

= (x - 5)(x² + 3x + 1)

e) 2xy - x² + 3y² - 4y + 1

= -x² + 2xy - y² + 4y² - 4y + 1

= -(x² - 2xy + y²) + (4y² - 4y + 1)

= -(x - y)² + (2y - 1)²

= (2y - 1)² - (x - y)²

= (2y - 1 - x + y)(2y - 1 + x - y)

= (3y - x - 1)(x + y - 1)

f) 4x¹⁶ + 81

= (2x⁸)² + 2.2x⁸.9 + 9² - 2.2x⁸.9

= (2x⁸ + 9)² - 36x⁸

= (2x⁸ + 9) - (6x⁴)²

= (2x⁸ + 9 - 6x⁴)(2x⁸ + 9 + 6x⁴)

= (2x⁸ - 6x⁴ + 9)(2x⁸ + 6x⁴ + 9)

a: Ta có: \(x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-y-3\right)\left(x+y-3\right)\)

b: Ta có: \(x^3+4x^2+4x\)

\(=x\left(x^2+4x+4\right)\)

\(=x\left(x+2\right)^2\)

c: Ta có: \(4xy-4x^2-y^2+9\)

\(=-\left(4x^2-4xy+y^2-9\right)\)

\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)

14 tháng 10 2021

c: \(x^2-4+3\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)

\(=\left(x-2\right)\left(x+2+3x-6\right)\)

\(=\left(4x-4\right)\left(x-2\right)\)

\(=4\left(x-1\right)\left(x-2\right)\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9