Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\left(x+2y\right)^2\)
\(-\left(x-3\right)^2\)
\(\left(3-5x\right)^2\)
\(-x^2-4xy-4y^2=-\left(x+2y\right)^2\)
\(-x^2+6x-9=-\left(x-3\right)^2\)
\(25x^2-30x+9=\left(5x-3\right)^2\)
\(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
\(a,=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)
\(2x^2-7xy+3y^2+5xz-5yz+2z^2=\left(2x^2+2z^2\right)+\left(5xz-5yz\right)-\left(7xy-3y^2\right)\)
\(=2\left(x^2+z^2\right)+5z\left(x-y\right)-y\left(7x-3y\right)\)
\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz.\)
\(=x^2.\left(y+z\right)+yz.\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right).\left(x^2+yz\right)+x\left(y^{^2}+z^2+2yz\right)\)
\(=\left(y+z\right).\left[x.\left(x+2\right)+y.\left(x+2\right)\right]\)
\(=\left(y+z\right).\left(x+z\right).\left(x+y\right)\)
5xy3 + 30x2z2 - 6x3yz - 25x2z
=> x(5y3 + 30xz2 - 6x2yz - 25xz)