\(4x^2-9y^2\) thành nhân tử ta có kết quả :

(A) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: =>(2x+3y-1)^2+(2x-3y)=0

=>2x-3y=0 và 2x+3y=1

=>x=1/4; y=1/6

d: =>2y-3=0 và 2x+3y-1=0

=>y=3/2 và 2x=1-3y=1-9/2=-7/2

=>x=-7/4 và y=3/2

20 tháng 4 2017

a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;

b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1

c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)

= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)

= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1

d) (x2 – 3x + xy -3y) : (x + y)

= [(x2 + xy) – (3x + 3y)] : (x + y)

= [x(x + y) – 3(x + y)] : (x + y)

= (x + y)(x – 3) : (x + y)

= x – 3.

10 tháng 10 2017

Tính nhanh:

a) (4x2 – 9y2) : (2x – 3y); b) (27x3 – 1) : (3x – 1);

c) (8x3 + 1) : (4x2 – 2x + 1); d) (x2 – 3x + xy -3y) : (x + y)

Bài giải:

a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;

b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1

c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)

= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)

= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1

d) (x2 – 3x + xy -3y) : (x + y)

= [(x2 + xy) – (3x + 3y)] : (x + y)

= [x(x + y) – 3(x + y)] : (x + y)

= (x + y)(x – 3) : (x + y)

= x – 3.



3 tháng 7 2019

\(a,\left(2x+5\right)\left(4x^2-10x+25\right)\)

\(=\left(2x+5\right)\left[\left(2x\right)^2-2x.5+5^2\right]\)

\(=\left(2x\right)^3+5^3=8x^3+125\)

\(b,\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

\(=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x\right)^3+\left(3y\right)^3=8x^3+27y^3\)

3 tháng 7 2019

57) (2x + 5)(4x2 - 10x + 25)

= 2x.4x2 + 2x.(-10x) + 2x.25 + 5.4x2 + 5.(-10x) + 5.25

= 8x3 - 20x2 + 50x + 20x2 - 50x + 125

= 8x3 + (-20x2 + 20x2) + (50x - 50x) + 125

= 8x3 + 125

59) làm tương tự

11 tháng 12 2019

\(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)

\(=\left(2x+3y\right)\left(2x-3y\right)^2-\left(2x-3y\right)\left(2x+3y\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y\right)\left(2x-3y-2x-3y\right)\)

\(=-\left(2x-3y\right)\left(2x+3y\right)\cdot6y\)

7 tháng 9 2019

a/Dùng hằng đẳng thức A2-B2=(A+B)(A-B) phân tích được ngay

\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)

=\(\left(3x-2y+3\right)\left(4-x-4y\right)\)

b/Chắc chỉ phân tích hằng đẳng thức (A-B)2=A2-2ab+B2

\(49\left(y-4\right)^2-9y^2-3y-36=49y^2-392y+784-9y^2-3y-36\)

\(=40y^2-395y+748\)

Mình dùng biệt thức cho ra nghiệm vô tỉ, không biết cho phải tại mình tính sai hay đề thiếu nữa

c/Khai triển biểu thức ban đầu ta được

\(x\left(x-y\right)+y\left(y-x\right)=x^2-xy+y^2-xy=x^2-2xy+y^2=\left(x-y\right)^2\)

Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có

\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)

\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)

\(=\)\(\frac{5}{3}\)

6 tháng 7 2017

ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)

\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)

Vậy giá trị của biểu thức không phụ thuộc vào biến