Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: A,B
Bài 2:
a) \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
b) \(x\in\left\{\sqrt{2.5};-\sqrt{2.5}\right\}\)
c) \(x\in\left\{\sqrt[4]{5};-\sqrt[4]{5}\right\}\)
a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
b: \(B=5x^2-7x\sqrt{y}+2y\)
\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)
\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)
\(x+7\sqrt{x}+10=\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(a\sqrt{a}+2a\right)+\left(\sqrt{a}+2\right)\)
\(=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(\sqrt{a}+2\right)\left(a+1\right)\)
a/ \(=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b/ \(=\left(x-\sqrt{22}\right)\left(x+\sqrt{22}\right)\)
c/ sửa đề bài xíu: \(2\sqrt{7x}\Rightarrow2\sqrt{7}x\)
\(=\left(x+\sqrt{7}\right)^2\)
d/ sửa như câu c
\(=\left(x-\sqrt{23}\right)^2\)