K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

a, \(4\left(x-y\right)\left(x+y\right)-5\left(x+y\right)^2=\left(x+y\right)\left[4\left(x-y\right)-5\left(x+y\right)\right]\)

\(=\left(x+y\right)\left(4x-4y-5x-5y\right)=\left(x+y\right)\left(-x-9y\right)=-\left(x+y\right)\left(x+9y\right)\)

b, \(4\left(x+y\right)^2-6\left(x-y\right)\left(x+y\right)=2\left(x+y\right)\left[2\left(x+y\right)-3\left(x-y\right)\right]\)

\(=2\left(x+y\right)\left(2x+2y-3x+3y\right)=2\left(x+y\right)\left(5y-x\right)\)

7 tháng 8 2021

a, 4(x−y)(x+y)−5(x+y)2

=(x+y)[4(x−y)−5(x+y)]4(x−y)(x+y)−5(x+y)2

=(x+y)[4(x−y)−5(x+y)]

=(x+y)(4x−4y−5x−5y)

=(x+y)(−x−9y)=−(x+y)(x+9y)

=(x+y)(4x−4y−5x−5y)=(x+y)(−x−9y)

=−(x+y)(x+9y)

b, 4(x+y)2−6(x−y)(x+y)

=2(x+y)[2(x+y)−3(x−y)]4(x+y)2−6(x−y)(x+y)

=2(x+y)[2(x+y)−3(x−y)]

=2(x+y)(2x+2y−3x+3y)

=2(x+y)(5y−x)

7 tháng 8 2021

a, \(40x^2y-8xy-16x^2y^2=8xy\left(5x-1-2xy\right)\)

b, \(\left(x-y\right)\left(x+y\right)-3\left(x-y\right)=\left(x-y\right)\left(x+y-3\right)\)

c, \(\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

7 tháng 8 2021

a) 40x2y - 8xy - 16x2y2

= 8xy( 5x - 1 - 2xy)

b) (x-y)(x+y)-3(x-y)    

= (x - y)( x + y - 3)

c)(x-y)2 -5(x-y)

=(x - y)(x - y - 5)

a: =(16x+20)^2-(10x+10)^2

=(16x+20-10x-10)(16x+20+10x+10)

=(26x+30)(6x+10)

=4(13x+15)(3x+5)

b: =(x-y+4-2x-3y+1)(x-y+4+2x+3y-1)

=(-x-4y+5)(3x+2y+3)

c: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(x^2+2x+1-x^2+2x-1)(x^2+2x+1+x^2-2x+1)

=2(x^2+1)*4x

=8x(x^2+1)

4 tháng 8 2023

Thứ nhất em làm quá tắt, thứ 2 em trình bày nó rất là khó nhìn. Em làm nhanh cho có số lượng chứ anh thấy làm thế sao mấy bạn hỏi bài hiểu được hả em? Làm bằng cái tâm nha em!

1) \(x^2+2xy+y^2-x-y-12\)

\(\left(x+y\right)^2-\left(x+y\right)-12\)

Đặt \(x+y=z\) (đặt ẩn phụ)

\(\Rightarrow z^2-z-12\)

\(=z^2+3z-4z-12\)

\(=z\left(z+3\right)-4\left(z+3\right)\)

\(=\left(z+3\right)\left(z-4\right)\)

Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)

#HuyenAnh

14 tháng 1 2021

vại

fdvfdverberrgtrgrgg

a: \(x^2-9-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)\left(1-x^2\right)\)

\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)

b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

d: \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

e: \(3x^2-4x-4\)

\(=3x^2-6x+2x-4\)

\(=3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(3x+2\right)\)

g: \(x^4+64y^4\)

\(=x^4+16x^2y^2+64y^4-16x^2y^2\)

\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

 

h: \(a^2+b^2+2a-2b-2ab\)

\(=a^2-2ab+b^2+2a-2b\)

\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)

i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)

\(=\left(x+1-y+3\right)^2\)

\(=\left(x-y+4\right)^2\)

k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

a) \(x^6-x^4+2x^3+2x^2\)

\(=x^2\left(x^4-x^2+2x+2\right)\)

\(=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)

\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

b) Ta có: \(4x^4+y^4\)

\(=4x^4+y^4+4x^2y^2-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\)

23 tháng 7 2021

a, \(x^6-x^4+2x^3+2x^2\)

\(=x^2\left(x^4-x^2+2x+2\right)=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)

\(=x^2\left[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\right]=x^2\left(x^3-x^2+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)

b, \(4x^4+y^4=\left(2x^2\right)^2+2.2x^2.y^2+\left(y^2\right)^2-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)

15 tháng 8 2018

mk ghi đáp án, ko phân tích đc thì IB mk

a) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

b) \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)

c)  \(x^6+y^2-2x^3y=\left(x^3-y\right)^2\)

d)  \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(3x^2+y^2\right)\)

e)  \(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)

f) \(-a^2-2a-1=-\left(a+1\right)^2\)

g)  \(27b^3-8a^3=\left(3b-2a\right)\left(9b^2+6ab+4a^2\right)\)

h)  \(x^3+9x^2y+27xy^2+27y^3=\left(x+3y\right)^3\)

i) \(16x^2-9\left(x+y\right)^2=\left(x-3y\right)\left(7x+3y\right)\)

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)