K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2020

\(\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\frac{\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\frac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}\)

\(=\lim\limits_{x\rightarrow1^+}\frac{1}{\sqrt{x+3}+2}=\frac{1}{4}\)

Để hàm số liên tục tại \(x=1\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)

\(\Leftrightarrow m^2+m+\frac{1}{4}=\frac{1}{4}\)

\(\Leftrightarrow m^2+m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

Đáp án B

NV
10 tháng 4 2020

Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì

Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm

NV
5 tháng 4 2020

Bài 1:

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2+2-\sqrt[3]{3x+5}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt{x+3}+2}-\frac{3\left(x-1\right)}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt{x+3}+2}-\frac{3}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}\right)=0\)

\(f\left(1\right)=a+1\)

Để hàm số liên tục trên \([-3;+\infty)\Leftrightarrow\) hàm số liên tục tại \(x=1\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow a+1=0\Rightarrow a=-1\)

Bài 2:

Các hàm số đã cho đều liên tục trên R nên liên tục trên từng khoảng bất kì

a/ Xét \(f\left(x\right)=m\left(x-1\right)^3\left(x+2\right)+2x+3\)

\(f\left(-2\right)=-1\) ; \(f\left(1\right)=5\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0;\forall m\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\) với mọi m

b/ \(m\left(sin^3x-cosx\right)=0\)

Nếu \(m=0\) pt có vô số nghiệm (thỏa mãn)

Nếu \(m\ne0\Leftrightarrow f\left(x\right)=sin^3x-cosx=0\)

\(f\left(0\right)=-1\) ; \(f\left(\frac{\pi}{2}\right)=1\)

\(\Rightarrow f\left(0\right).f\left(\frac{\pi}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{\pi}{2}\right)\)

Phương trình luôn có nghiệm với mọi m

NV
29 tháng 5 2020

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x+1}-1}{x}=\lim\limits_{x\rightarrow0^+}\frac{x}{x\left(\sqrt{x+1}+1\right)}=\lim\limits_{x\rightarrow0^+}\frac{1}{\sqrt{x+1}+1}=\frac{1}{2}\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)=\lim\limits_{x\rightarrow0^-}\left(\sqrt{x^2+1}-m\right)=1-m\)

Để hàm số liên tục trên R \(\Leftrightarrow\) liên tục tại \(x_0=0\Leftrightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Leftrightarrow\frac{1}{2}=1-m\Rightarrow m=\frac{1}{2}\)

NV
13 tháng 3 2020

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)}=\lim\limits_{x\rightarrow2}\left(x+1\right)=3\)

Để hàm số liên tục tại x=2

\(\Rightarrow\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\Leftrightarrow m^2+4m-1=3\)

\(\Leftrightarrow m^2+4m-4=0\Rightarrow m=-2\pm2\sqrt{2}\)

NV
29 tháng 5 2020

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(m+\frac{1-x}{1+x}\right)=m+1\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\frac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}=\lim\limits_{x\rightarrow0^-}\frac{-2x}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

\(=\lim\limits_{x\rightarrow0^-}\frac{-2}{\sqrt{1-x}+\sqrt{1+x}}=-1\)

Để hàm số liên tục tại x=0

\(\Leftrightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow m+1=-1\Rightarrow m=-2\)

Bài 2:

Đặt \(f\left(x\right)=4x^4+2x^2-x-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R

\(f\left(-1\right)=4>0\) ; \(f\left(0\right)=-3< 0\)

\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(-1;0\right)\)

\(f\left(1\right)=2>0\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm trên \(\left(-1;1\right)\)