Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi I chảy là x (x>0) => thời gian vòi I chảy trong 1h là 1/x
Thời gian vòi II chảy là y (y>0)=>thời gian vòi II chảy trong 1h là 1/y
HPT: 1/x+1/y=1/6 (1)
4/x+7/y=5/6(2)
=> 1/x=1/9=>x=9(h)
1/y=1/18=>y=18(h)
Gọi x là số phần bể vòi I chảy được trong 1 giờ.
y là số phần bể vòi II chảy được trong 1 giờ. (x, y > 0)
=> 2 vòi nước cùng chảy vào bể trong một giờ được 5/24 bể hay ta có pt: x + y = 5/24 (1)
Sau 9 + 6/5 giờ, lượng nước vòi I chảy vào bể là (9 + 6/5)x = 51/5 (bể)
Sau 6/5 giờ, lượng nước vòi II chảy vào bể là 6/5.y (bể)
=> ta có pt: 51/5.x + 6/5.y = 1. (2)
Từ (1) và (2) ta có hệ gồm 2 pt: {x + y = 5/24 và 51/5.x + 6/5.y = 1.
Giải hệ trên ta được x = 1/12; y = 1/8.
Vậy vòi I chảy một mình thì sau 12 giờ đầy bể; vòi II chảy một mình thì sau 8 giờ đầy bể.
gọi vòi 1 mỗi giờ chảy được x bể
suy ra 1 giờ vòi 1 chảy được \(\frac{1}{x}\)bể
gọi vòi 2 mỗi giờ chảy được y bể
suy ra vòi 2 chảy 1 giờ được \(\frac{1}{y}\)bể
ta có cả 2 vòi cùng chảy sau 6 giờ đầy bể =>\(\frac{6}{x}\)+ \(\frac{6}{y}\)= 1 ( bể)
nhân cả hai vế với 2 => \(\frac{12}{x}\)+\(\frac{12}{y}\)= 2 (bể) (1)
nếu mở vòi I trong 4 h và mở vòi II trong 7 h thì đầy 5/6 bể => \(\frac{4}{x}\)+ \(\frac{7}{y}\)=\(\frac{5}{6}\) ( bể)
nhân cả hai vế với 3 => \(\frac{12}{x}\)+ \(\frac{21}{y}\) = \(\frac{15}{6}\) (bể) (2)
trừ từng vế của 1 và hai ta được \(\frac{12}{x}\)+\(\frac{12}{y}\)- \(\frac{12}{x}\)- \(\frac{21}{y}\)= 2- \(\frac{15}{6}\)
\(\frac{-9}{y}\)= \(\frac{-1}{2}\)
=> y = 18
=> \(\frac{6}{x}\)+ \(\frac{6}{18}\)= 1
<=> \(\frac{6}{x}\)= \(\frac{2}{3}\)
<=> x = 9
vậy vòi I sau 9 giờ chảy đầy bể
vòi II sau 18 h chảy đầy bể