Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số tự nhiên nguyên tố cùng nhau sẽ có ước chung lớn nhất là 1
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Gọi d là ƯCLN của 11a +2b và 18a +5b => 11a +2b \(⋮\) d và 18a +5b \(⋮\) d
=> 18.(11a + 2b) \(⋮\) d và 11(18a + 5b) \(⋮\) d
=> 11(18a + 5b) - 18.(11a + 2b) \(⋮\) d => 19b \(⋮\) d => 19 \(⋮\) d hoặc b \(⋮\) d
=> d là ước của 19 hoặc d là ước của b (1)
tương tự ta cũng có 5.(11a + 2b) \(⋮\) d và 2(18a + 5b) \(⋮\)d
=> 5.(11a + 2b) - 2(18a + 5b) \(⋮\)d => 19a \(⋮\)d
=> 19 \(⋮\) d hoặc a \(⋮\) d
=> d là ước của 19 hoặc d là ước của a (2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b
=> d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
1
Hai số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất là 1