K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

Ta có 

AB cắt CD tại O 

\(\Rightarrow AOD\) và \(BOC\) đối đỉnh 

\(\Rightarrow AOD=BOC\)

\(AOD+BOC=100\)  

\(\Rightarrow AOD=BOC=\frac{100}{2}=50\)

18 tháng 9 2020

               Bài làm :

Ta có hình vẽ :

A B C D O

Ta có :

\(\hept{\begin{cases}\widehat{AOD}+\widehat{BOC}=100^o\\\widehat{AOD}=\widehat{BOC}\left(\text{2 góc đối đỉnh}\right)\end{cases}\Rightarrow\widehat{AOD}=\widehat{BOC}=\frac{100}{2}=50^O}\)

\(\Rightarrow\widehat{BOD}=\widehat{COA}=180-50=130^O\)

Vì \(\widehat{AOD}=\widehat{BOC}\)(2 góc đối đỉnh) mà \(\widehat{AOD}+\widehat{BOC}=100^0\Rightarrow\widehat{AOD}=\widehat{BOC}=\frac{100^0}{2}=50^0\)

Tương tự: \(\widehat{AOC}=\widehat{BOD}\)(2 góc đối đỉnh) mà \(\widehat{AOC}+\widehat{AOD}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{BOD}=\widehat{AOC}=180^0-50^0=130^0\)

Số đo của bốn góc là \(110^0;110^0;70^0;70^0\)

20 tháng 7 2022

làm thế nào vậy bạn

24 tháng 11 2023

Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu

Cách 1: 

Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)

=>\(\widehat{FON}+250^0=360^0\)

=>\(\widehat{FON}=110^0\)

\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)

mà \(\widehat{FON}=110^0\)

nên \(\widehat{EOM}=110^0\)

\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)

=>\(\widehat{EON}+110^0=180^0\)

=>\(\widehat{EON}=70^0\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)

\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)

=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)

Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)

nên từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)

mà \(\widehat{EOM}=110^0\)

nên \(\widehat{FON}=110^0\)

a)Vì MN và PQ cắt nhau tại O 

=> MOP = QON = 60° ( đối đỉnh) 

Mà MOP + NOP = 180° ( kề bù )

=> NOP =180° - 60° = 120° 

=> NOP = MOQ = 120° ( đối đỉnh) 

28 tháng 8 2018

Bạn nói j vậy

19 tháng 6 2021

A O C D B

TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)

Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)

=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)

TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)

Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOD}+\widehat{BOD}=180o\)

=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)

vô lí do \(\widehat{AOC}>\widehat{BOC}\)

12 tháng 9 2019

3 góc còn lại là:50 độ , 130 đô,50 độ

đáp số 

50

150

50

hok tốt