Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian mà đội 1 làm một mình xong cv là x (ngày) x > 0
Gọi thời gian mà đội 2 làm một mình xong cv là y (ngày) y > 0
Một ngày cả hai đội làm được 1/x + 1/y = 1/12 cv (1)
Nếu làm riêng 1 mình đội 1 nhanh hơn đội 2 là 7 ngày nên: x + 7 = y (2)
Giải hệ 2 pt trên ta được x = 21, y = 28
Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)
Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc
Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:
\(x-y=10\) (1)
Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:
\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)
Thế pt trên xuống pt dưới:
\(12\left(x+x-10\right)=x\left(x-10\right)\)
\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y=x-10=20\)
Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày
Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)
(Điều kiện: x>10)
Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)
Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)
Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)
Do đó, ta có phương trình:
\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)
=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)
=>\(x\left(x-10\right)=12\left(2x-10\right)\)
=>\(x^2-10x=24x-120\)
=>\(x^2-34x+120=0\)
=>(x-30)(x-4)=0
=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày
Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày
Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)
Mỗi ngày đội 1 làm được phẫn việc là 1/x
Đội 2 làm được số phần việc là 1/y
cả hai đội làm được số phần việc là 1/12
ta có phương trình: 1/x+1/y=1/12(1)
Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc
từ đó ta có phương trình: 5/x+15/y=3/4(2)
Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4
Giải hệ pt ta tìm được x=20; y=30
KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.
Gọi A là số công việc đội 1 và đội 2 làm được trong 1 ngày.
Gọi B là số công việc đội 3 làm được trong 1 ngày.
Cả 3 đội trong 1 ngày làm được A + B công việc
Theo bài ra ta có hệ phương trình
4 * (A + B) + 12 * A = 1 hay 4A +4B + 12A = 1 hay 16A +4B = 1 (1)
6 * (A + B) + 9 * A = 1 hay 6A + 6B + 9A =1 hay 15A + 6B = 1 (2)
Nhân (1) với 3, nhân (2) với 2 ta có hệ
48A + 12B = 3 (3)
30A + 12B = 2 (4)
Trừ (3) cho (4) ta có
18A = 1, suy ra A = 1/18
Thời gian chỉ đội 1 và đội 2 cùng làm hoàn thành công việc là
1 : 1/18 = 18 ngày
Vậy chỉ đội 1 và đội 2 cùng làm thì sau 18 ngày sẽ hoàn thành công việc.
Gọi thời gian làm riêng để hoàn thành công việc của đội 1 là x>0 (ngày), đội 2 là y>0 (ngày)
Trong 1 ngày hai đội lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành sau 12 ngày nên: \(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
Do đội 1 hoàn thành chậm hơn đội 2 là 10 ngày nên: \(x=y+10\)
Ta có hệ pt:
\(\left\{{}\begin{matrix}12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12\left(\dfrac{1}{y+10}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}12\left(2y+10\right)=y\left(y+10\right)\\x=y+10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2-14y-120=0\\x=y+10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=20\\x=30\end{matrix}\right.\)
- Gọi thời gian mỗi đội hoàn thành công việc là x; y ( ngày ; x,y > 8 )
- Một ngày đội 1 làm được số phần công việc là : \(\dfrac{1}{x}\) ( phần )
- Một ngày đội 2 làm được số phần công việc là : \(\dfrac{1}{y}\) ( phần )
=> Một ngày hai đội làm được số phần công việc là : \(\dfrac{1}{x}+\dfrac{1}{y}\) ( phần )
Mà nếu làm chung 8 ngày sẽ xong công việc .
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\left(I\right)\)
- Lại có nếu làm riêng đội 1 nhanh hơn đội 2 12 ngày .
\(\Rightarrow-x+y=12\left(II\right)\)
- Từ 1 và 2 ta được hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\-x+y=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=24\\x=12\end{matrix}\right.\) ( TM )
Vậy ...
Gọi số ngày hoàn thành công việc riêng của đội 1 là a (a>0) (ngày)
=> Số ngày hoàn thành công việc riêng của đội 2 là a + 12 (ngày)
Số công việc mỗi ngày của đội 1: \(\dfrac{1}{a}\) (công việc)
Số công việc mỗi ngày của đội 2: \(\dfrac{1}{a+12}\) (công việc)
Theo bài ta có
\(8.\left(\dfrac{1}{a}+\dfrac{1}{a+12}\right)=1\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{a+12}{a\left(a+12\right)}+\dfrac{a}{a\left(a+12\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2a+12}{a^2+12a}=\dfrac{1}{8}\)
\(\Leftrightarrow16a+96=a^2+12a\)
\(\Leftrightarrow a^2-4a-96=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=12\\a=-8\left(loại\right)\end{matrix}\right.\)
Vậy số ngày hoàn thành công việc riêng của đội 1 là 12 ngày, đội 2 là 24 ngày
Gọi xx (ngày) là thời gian đội I làm một mình xong công việc với năng suất ban đầu (x>0)(x>0),
yy (ngày) là thời gian đội II làm một mình xong công việc với năng suất ban đầu (y>0)(y>0)
Trong 1 ngày đội I làm được 1x1x (công việc),
đội II làm được 1y1y (công việc)
Hai đội xây dựng làm chung theo dự định trong 12 ngày xong nên ta có:
12.1x+12.1y=112.1x+12.1y=1 (1)
Cả hai đội làm chung 8 ngày thì được 812=23812=23 (công việc)
Số công việc còn lại của đội II làm là: 1−23=131−23=13 (công việc)
Năng suất của đội II tăng gấp 2 lần nên 1 ngày làm được 2⋅1y=2y2·1y=2y công việc
Khi năng suất tăng họ làm 3,5 ngày thì hoàn thành phần công việc còn lại nên ta có:
3,5.2y=13⇒y=213,5.2y=13⇒y=21 (2)
Thay vào (1) suy ra 12.1x+12.121=1⇒x=2812.1x+12.121=1⇒x=28
Vậy nếu làm theo dự định thời gian đội I làm một mình xong công việc là 2828 ngày, thời gian đội II làm một mình xong công việc là 2121 ngày.
Gọi x,y theo thứ tư là thời gian mà mỗi đội làm một mình thì hoàn thành công việc.
Với năng suất ban đầu: x,y > 0 và tính theo đơn vị ngày.
Trong 1 ngày đội I làm được 1/x công việc. 1 ngày đội II làm được 1/y công việc. 1 ngày cả 2 đội làm được 1/12 công việc.
Ta có phương trình: 1/x + 1/y = 1/12 (công việc)( 1)
Trong 8 ngày cả hai đội làm được 8. 1/12 = 2/3 (công việc).
Sau khi một đội nghỉ, năng suất của đội II là 2/y. Họ phải làm trong 3,5 ngày thì xong công việc nên ta có phương trình 1/3 : 2/y = 7/2
(2)
Ta có hệ:Giải hệ1,2 này, ta được x = 28 (ngày); y = 21(ngày) Chú ý: Ta có thể đặt hệ