Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian đội 1 hoàn thành công việc một mình là 10 giờ.
Thời gian đội 2 hoàn thành công việc một mình là 15 giờ.
Thời gian đội 1 hoàn thành công việc một mình là 10 giờ.
Thời gian đội 2 hoàn thành công việc một mình là 15 giờ
Đổi : 2h55' = 35/12h
Gọi thời gian đội 1 làm một mình xong công việc là x (x > 0; giờ)
Gọi thời gian đội 2 làm một mình xong công việc là x + 2 (giờ)
Mỗi giờ đội 1 làm được 1/x
Mỗi giờ đội 2 làm được 1/x+2
Vì cả hai đội thì sau 2 giờ 55 phút = 35/12(giờ) xong.
Trong 1 giờ cả hai đội làm được 12/35 công việc
Theo bài ra ta có phương trình 1/x + 1/(x+2) = 12/35.
<=> 35.(x+2) + 35.x = 12.x.(x+2)
<=> 70x + 70 = 12.x^2 + 24.x
<=> 12.x^2 - 46x - 70 =0 <=> 6x^2 - 23x - 35 = 0
<=> (6x +7).(x-5) = 0 <=> x = -7/6 (loại) hoặc x = 5 (tm)
=> Thời gian đội 1 làm 1 mình là 5 h
Thời gian đội 2 làm 1 mình: 7h
Lời giải:
Giả sử đội 1 và đội 2 đào riêng trong lần lượt $a,b$ giờ sẽ đào xong con mương ($a,b>0$)
Trong 1 giờ thì:
Đội 1 đào được $\frac{1}{a}$ con mương
Đội 2 đào được $\frac{1}{b}$ con mương
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{8+4}{a}+\frac{4}{b}=1\\ \frac{10,5+3}{a}+\frac{3}{b}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{12}{a}+\frac{4}{b}=1\\ \frac{13,5}{a}+\frac{3}{b}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{18}\\ \frac{1}{b}=\frac{1}{12}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=18\\ b=12\end{matrix}\right.\) (h)
Vậy.....
Gọi thời gian mỗi đội làm một mình để xong công việc lần lượt là \(x,y\left(h\right);x,y>0\).
Mỗi giờ mỗi đội làm được lần lượt số phần công việc là: \(\frac{1}{x},\frac{1}{y}\)công việc.
Theo bài ra ta có hệ phương trình:
\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\3\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=12\end{cases}}\left(tm\right)\).
gọi số phần công việc mỗi đội làm được trong một giờ lần lượt là x và y ( phần / giờ )
Đổi \(\text{ 1 tiếng rưỡi =}\frac{3}{2}\text{ giờ}\)
ta có hệ :
\(\hept{\begin{cases}\frac{1}{x+y}=6\\\frac{1}{2y}-\frac{1}{2x}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=6\\x-y=3xy\end{cases}\Rightarrow}\hept{\begin{cases}y=6-x\\x-6+x=3x\left(6-x\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6-x\\3x^2-16x-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{10-\sqrt{82}}{3}\\x=\frac{8+\sqrt{82}}{3}\end{cases}}}\)vậy đội 1 làm mất \(\frac{3}{8+\sqrt{82}}\text{ giờ}\)
đội 2 làm mất \(\frac{3}{10-\sqrt{82}}\text{ giờ }\)