Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: \(R_1+R_2=\frac{U^2}{P}\)
\(\Rightarrow P=\frac{U^2}{R_1+R_2}=\frac{100^2}{100}=100W\)
R thay đổi để công suất của mạch cực đại \(\Rightarrow R = |Z_L-Z_C|\)
Hệ số công suất \(\cos\varphi=\dfrac{R}{Z}=\dfrac{R}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{R}{\sqrt{R^2+R^2}}=\dfrac{1}{\sqrt 2}\)
\(\Rightarrow \varphi=\dfrac{\pi}{4}\)
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
\(Z_C=\frac{1}{\omega C}=100\Omega\)
L thay đổi để \(U_{Lmax}\) khi \(Z_L=\frac{R^2+Z_C^2}{Z_C}=200\Omega\)
\(\Rightarrow L=\frac{Z_L}{\omega}=\frac{2}{\pi}\)(H)
Ta lấy \(U_R=1\)
\(\Rightarrow U_L=2\), \(U_C=1\)
\(\tan\varphi=\frac{U_L-U_C}{U_R}=\frac{2-1}{1}=1\)
\(\Rightarrow\varphi=\frac{\pi}{4}\)
Vậy u sớm pha hơn i là \(\frac{\pi}{4}\), hay i trễ pha với u là \(\frac{\pi}{4}\)
Do mạch chỉ có tụ C thì u vuông pha với i, nên ta có:
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
\(\Rightarrow\left(\frac{60}{U_0}\right)^2+\left(\frac{\sqrt{3}}{I_0}\right)^2=1\)
\(\left(\frac{60\sqrt{2}}{U_0}\right)^2+\left(\frac{\sqrt{2}}{I_0}\right)^2=1\)
\(\Rightarrow\begin{cases}U_0=120V\\I_0=2A\end{cases}\)
Ta áp dụng điều kiện vuông pha với 2 đoạn mạch u1 và u2.
Khi đó: \(\tan\varphi_1.\tan\varphi_2=-1\)
\(\Leftrightarrow\frac{Z_L}{R}.\frac{Z_L-Z_C}{R}=-1\)
\(\Leftrightarrow R^2=Z_L\left(Z_C-Z_L\right)\)
tan \(\varphi\)=1=\(\frac{Z_C-Z_L}{R}\Rightarrow\)ZC=R+\(\omega\)L=125
CHỌN A
Cho mình hỏi là sao phi lại bằng 1 vậy. Giải thích mình tí với
Công suất tiêu thụ của mạch gồm R và r là:
\(P=I^2\left(R+r\right)\)
Do \(U=U_1+U_2\)
Nên: u1 cùng pha với u2
\(\Rightarrow\tan\varphi_1=\tan\varphi_2\)
\(\Rightarrow\frac{Z_{L1}}{R_1}=\frac{Z_{L2}}{R_2}\)
\(\Rightarrow\frac{\omega L_1}{R_1}=\frac{\omega L_2}{R_2}\)
\(\Rightarrow\frac{L_1}{R_1}=\frac{L_2}{R_2}\)
Chọn đáp án A