Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+y^2+2xy-6x-2y+10\)
\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)
\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)
a) \(2x^2+y^2+4x-2y-2xy+10\)
\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)
\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)
.......................chắc không phải cách làm này đâu!
b) \(5x^2+y^2+2xy-4x\)
\(=x^2+4x^2+y^2+2xy-4x\)
\(=\left(x^2+2xy+y^2\right)+x^2-4x\)
\(\left(x+y\right)^2+x^2-4x\)
a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)
VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(\Rightarrow2A=4x^2+4xy+2y^2-4x+4y+4\)
\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right).1+1+y^2+6y+9-6\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y+3\right)^2-6\)
\(=\left(2x+y-1\right)^2+\left(y+3\right)^2-6\)
vì \(\left(2x+y-1\right)^2\ge0\forall x,y;\left(y+3\right)^2\ge0\forall y\)nên
\(2A=\left(2x+y-1\right)+\left(y+3\right)-6\ge-6\forall x,y\)
hay \(2A\ge-6\Rightarrow A\ge-3\Rightarrow minA=-3\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
\(B=2x^2+y^2+2xy+6x+2y+2015\)
\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)
\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)
Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)
Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)
\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)
\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)
Chúc bạn học tốt ~
Đặt \(B=-x^2-2x-y^2-8y-10\)
\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)
\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)
\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)
Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)
Chúc bạn học tốt ~
\(P=2x^2+y^2+2xy-6x-2y+10\)
\(P=\left(x^2+y^2+1^2-2y-2x\right)+\left(x^2-4x+4\right)+5\)
\(P=\left(x+y-1\right)^2+\left(x-2\right)^2+5\)
\(\left\{{}\begin{matrix}\left(x+y-1\right)^2\ge0\\\left(x-2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P\ge5\) đẳng thức khi \(\left\{{}\begin{matrix}x-2=0\\x+y-1=0\end{matrix}\right.\) => x=2 và y=-1
2x2 + y2 + 2xy - 6x - 2y + 10
= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5
= (x + y - 1)2 + (x - 2)2 + 5 \(\ge\) 5
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x+y-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Vậy Min = 5 khi x = 2 và y = - 1