\(-8x^2+4xy-y^2+10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

\(10-\left(y-2x\right)^2-4x^2\le10\)đẳng thức khi \(\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Lời giải:
\(A=4x^2+12x+2018=(2x)^2+2.2x.3+3^2+2009\)

\(=(2x+3)^2+2009\)

Vì $(2x+3)^2\geq 0, \forall x\Rightarrow A=(2x+3)^2+2009\geq 2009$

Vậy GTNN của $A$ là $2009$. Giá trị này được xác định tại $(2x+3)^2=0\Leftrightarrow x=\frac{-3}{2}$

------------------

\(B=5x^2+y^2-4xy-6x+13=(4x^2+y^2-4xy)+(x^2-6x+9)+4\)

\(=(2x-y)^2+(x-3)^2+4\)

Vì $(2x-y)^2\geq 0; (x-3)^2\geq 0, \forall x,y$

$\Rightarrow B=(2x-y)^2+(x-3)^2+4\geq 4$

Vậy GTNN của $B$ là $4$. Giá trị này xác định tại $(2x-y)^2=(x-3)^2=0\Leftrightarrow x=3; y=6$

-------------

\(C=9x^2+y^2-2xy-8x+10\)

\(=(x^2+y^2-2xy)+(8x^2-8x)+10\)

\(=(x-y)^2+8(x^2-x+\frac{1}{4})+8=(x-y)^2+8(x-\frac{1}{2})^2+8\)

\(\geq 0+8.0+8=8\)

Vậy GTNN của $C$ là $8$. Giá trị này xác định tại \((x-y)^2=(x-\frac{1}{2})^2=0\Leftrightarrow x=y=\frac{1}{2}\)

29 tháng 8 2019

Đoàn Phương Linh GV á bn

7 tháng 11 2018

Giải sơ qua:

1)\(B=4x^2-4xy+2y^2+1=\left(2x-y\right)^2+y^2+1\ge1\)

2) có vẻ sai đề

7 tháng 11 2018

Đúng đề hết nhé

17 tháng 11 2016

-8x2+4xy-y2+10=10-(4x2-4xy+y2)-4x2=10-(2x-y)2-(2x)2

vi-(2x-y)2-(2x)2 ≤0

=>10-(2x-y)2-(2x)2≤10

dau bang say ra khi (2x-y)2-(2x)2=0 

vậy gái trị nhỏ nhất là:10

20 tháng 11 2016

\(Q=-8x^2+4xy-y^2+10\)<=>\(Q=10-4x^2+4xy-y^2-4x^2\)

<=>\(Q=10-\left[\left(2x^2\right)-4xy+y^2\right]-\left(2x\right)^2\)<=>\(Q=10-\left(2x-y\right)^2-\left(2x\right)^2\)

<=>\(Q=10-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\\left(2x\right)^2\ge0\end{cases}\Leftrightarrow\left(2x-y\right)^2+\left(2x\right)^2\ge0}\)\(\Leftrightarrow-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\le0\)

\(\Leftrightarrow Q=10-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\le10\)

=>Qmax=10 <=> \(\left(2x-y\right)^2=\left(2x\right)^2=0\)<=>\(2x-y=2x=0\) <=>\(x=y=0\)

Vậy Qmax=10 tại x=y=0

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:

Ta có:

$5x^2+y^2-4xy-2y+8x+2013=(4x^2-4xy+y^2)+x^2-2y+8x+2013$

$=(2x-y)^2+2(2x-y)+x^2+12x+36+1977$

$=(2x-y)^2+2(2x-y)+1+(x+6)^2+1976$

$=(2x-y+1)^2+(x+6)^2+1976\geq 1976>0$ với mọi $x,y$

Do đó biểu thức không âm với mọi $x,y$

7 tháng 11 2020

2(2x-y)+x2+12x+36+1997

=4x-2y+x2+12x+36+1997

=16x-2y+x2+2013 khác x2-2y+8x+2013

Bài bạn giải thế là sai r

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn