\(\left(x^2-16\right)\left(x-3\right)^2+9x^2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

a) |x2 - 1| + |x + 1| = 0

<=> |x + 1|.|x - 1| + |x + 1| = 0

<=> |x + 1|(|x - 1| + 1) = 0

<=> |x + 1| = 0

<=> x = -1

b) pt <=> \(\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

<=> |x - 4| + |x + 2| = 0

Ta thấy VT ≥ VP nhưng dấu "=" không xảy ra nên pt vô nghiệm

22 tháng 1 2017

chịu =))))))))))

22 tháng 1 2017

a)

\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x+5\right)}+1=\sqrt{x+5}+\sqrt{x+2}\\ \)

\(a+b-ab=1\)\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\orbr{\begin{cases}a=1\Rightarrow\sqrt{x+2}=1\Rightarrow x=-1\\b=1\Rightarrow\sqrt{x+5}=1\Rightarrow x=-4\end{cases}}\)

b)

\(-\left(x+3\right)^2=\left(3x+10\right)-2\sqrt{3x+10}+1=\left(\sqrt{3x+10}-1\right)^2\)

Nghiệm duy nhất có thể x+3=0

với x=-3 có VP=0

=> x=-3 là nghiệm duy nhất

28 tháng 2 2018

a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy...

b,\(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)

\(\Leftrightarrow\left(x+2\right)\left(5-3x\right)-\left(x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-4x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy...

14 tháng 7 2018

a) \(\left|3x+1\right|=\left|x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)

\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

e) \(\left|x^2-1\right|+\left|x+1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)

\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)

⇒ vô nghiệm

NV
22 tháng 9 2020

\(x^4-4x^3-2x^2-16x-24=0\)

Giả sử đa thức được tách về dạng:

\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Nhân phá ra ta được:

\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)

Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán

\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)

Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)

Vậy \(x^4-4x^3-2x^2-16x-24=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez

Cách 2: sử dụng casio

Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)

Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="

Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái

Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1

Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6

Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="

Sau đó shift+SOLVE

Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="

Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A

Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)

Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B

Nhấn AC, rồi nhập alpha A+alpha B rồi "="

Violympic toán 9

Nó ra 4

Tiếp tục nhập \(A\times B\) rồi "="

Nó ra -6

Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)

Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)

Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)

Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)

bài toán coi như xong

22 tháng 9 2020

Ánh Dương Clap clap :) Congratulation