K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\left(x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

(+) x - 2 = 0

<=> x = 2 (nhận)

(+) \(1-3\sqrt{x+2}=0\)

\(\Leftrightarrow9\left(x+2\right)=1\)

\(\Leftrightarrow x=\dfrac{1}{9}-2\)

\(\Leftrightarrow x=-\dfrac{17}{9}\) (loại)

29 tháng 7 2017

a) Bình phương lên thôi

Đk: \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Rightarrow\left(x-1\right)+\left(5x-1\right)-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x\)

\(\Leftrightarrow4\left(x-1\right)\left(5x-1\right)=9x^2\) (vì \(x\ge1\))

\(\Leftrightarrow11x^2-24x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{11}\end{matrix}\right.\)

Thử lại thấy ko thỏa mãn

Vậy pt vô nghiệm.

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho

30 tháng 7 2017

các bài này pn bình phương cả 2 vế là ổn

10 tháng 3 2020

mình sửa đề câu 1 

\(x^2-3x-6+\sqrt{x^2-3x}=0\)

\(ĐK:x\le12\)

Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)

PT trở thành a+b=6

Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)

Đến đây đơn giản rồi nhé