K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

phả là 10x chứ

đặt  2 căn đầu bằng a

bình phương a lên

 

29 tháng 7 2019

\(\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{\left(x-1\right)\left(-x+9\right)}-\sqrt{\left(2x-12\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-\sqrt{9-x}-\sqrt{2x-12}\right)=0\)

giải nốt nhá

sai thfi thông cảm nha

10 tháng 4 2019

Đặt \(\sqrt{x-1}=a,\sqrt{9-x}=b\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a+b+2ab=12\end{cases}\Rightarrow a+b=\sqrt{8+2ab}}\)

\(\Leftrightarrow\sqrt{8+2ab}+2ab=12\)

Bạn tự giải nha

\(\Rightarrow ab=4\Rightarrow a+b=4\)

\(\Leftrightarrow\hept{\begin{cases}a+b=4\\ab=4\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x-1}=2\\\sqrt{9-x}=2\end{cases}\Rightarrow}x=5}\)(tm)

Vậy x=5

18 tháng 2 2020

ĐKXĐ:\(x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt[4]{x}-1\right)^2}+\sqrt{\left(\sqrt[4]{x}-3\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|=2\)

Ta có: \(\left|\sqrt[4]{x}-1\right|\ge\sqrt[4]{x}-1;\left|\sqrt[4]{x}-3\right|\ge3-\sqrt[4]{x}\)

\(\Rightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|\ge\sqrt[4]{x}-1+3-\sqrt[4]{x}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|\sqrt[4]{x}-1\right|=\sqrt[4]{x}-1\\\left|\sqrt[4]{x}-3\right|=3-\sqrt[4]{x}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}-1\ge0\\\sqrt[4]{x}-3\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt[4]{x}\ge1\\\sqrt[4]{x}\le3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le81\end{cases}\left(TMĐKXĐ\right)}}\)

25 tháng 9 2015

a) 

ĐK x >= 0  (1)

pt <=> \(\sqrt{x+1}=\frac{1}{\sqrt{x}}-\sqrt{x}\)

ĐK \(\frac{1}{\sqrt{x}}-\sqrt{x}\ge0\) => \(\frac{1-x}{\sqrt{x}}\ge0\) => \(x\le1\) (2)

pt <=> \(x+1=\frac{1}{x}+x-2\Leftrightarrow\frac{1}{x}=3\Rightarrow x=\frac{1}{3}\) ( TM (1) và (2) ) 

Vậy x = 1/3 là n* của pt 

25 tháng 9 2015

b) ĐKXĐ: t lười lắm, c tự tìm nhe :D

đặt a=x+3

b=x-3

khi đó ptr trở thành:

\(\frac{a+2\sqrt{ab}}{2b+\sqrt{ab}}\)=\(\sqrt{2}\)

<=>\(\frac{\sqrt{a}.\left(\sqrt{a}+2\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+2\sqrt{b}\right)}\)=\(\sqrt{2}\)

<=>\(\frac{\sqrt{a}}{\sqrt{b}}\)=\(\sqrt{2}\)

<=>a/b=2

<=>a=2b

<=>x+3=2(x-3)

<=>x+3=2x-6

<=>x=9(chắc chắn là thỏa mãn ĐKXĐ nhưng mà sao thay vào ko đc nhỉ.phát hiện lỗi sai sửa giùm t nhe! :D)

8 tháng 11 2018

<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)

mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\)\(\sqrt{5\left(x^2-1\right)^2+4}\ge4\)\(2\left(x+1\right)^2\ge0\)với mọi x 

=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)

'=" xảy ra<=> x+1=0<=> x=-1

23 tháng 12 2019

a.

\(ĐK:x\ge\frac{1}{2}\)

PT\(\Leftrightarrow-\left(2x-1-\sqrt{2x-1}+\frac{1}{4}\right)+x^2-x+\frac{1}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\left(\sqrt{2x-1}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\sqrt{2x-1}-1\right)\left(x-\sqrt{2x-1}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\sqrt{2x-1}=1\\x=\sqrt{2x-1}\end{cases}}\)

Chắt duoc roi he 

23 tháng 12 2019

b.

\(ĐK:1\le x\le9\)

\(\Rightarrow\hept{\begin{cases}a+b+2ab=12\\a^2+b^2=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2+\left(a+b\right)-12=0\\a^2+b^2=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b-3\right)\left(a+b+4\right)=0\\a^2+b^2=7\end{cases}}\)

Loai \(a+b+4=0\)