K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

bach nhac lam Xl nha đến đây -----> bí

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ

Mn giúp em vs ạ! Thanks trước!

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:
ĐKXĐ:..........

PT \(\Leftrightarrow \frac{2x^2+x}{\sqrt{2x^2+x+10}}=\sqrt{2x^2+x+4}-2=\frac{2x^2+x}{\sqrt{2x^2+x+4}+2}\)

\(\Leftrightarrow (2x^2+x)\left(\frac{1}{\sqrt{2x^2+x+10}}-\frac{1}{\sqrt{2x^2+x+4}+2}\right)=0\)

Nếu $2x^2+x=0\Rightarrow x=0$ hoặc $x=-\frac{1}{2}$ (thỏa mãn)

Nếu \(\frac{1}{\sqrt{2x^2+x+10}}-\frac{1}{\sqrt{2x^2+x+4}+2}=0\Rightarrow \sqrt{2x^2+x+10}=\sqrt{2x^2+x+4}+2\)

\(\Leftrightarrow \frac{6}{\sqrt{2x^2+x+10}+\sqrt{2x^2+x+4}}=2\)

\(\Rightarrow \sqrt{2x^2+x+10}+\sqrt{2x^2+x+4}=3\)

Điều này vô lý do \(2x^2+x+10=x^2+(x+\frac{1}{2})^2+\frac{39}{4}>9\Rightarrow \sqrt{2x^2+x+10}>3\)

và $\sqrt{2x^2+x+4}>0$

Vậy........