K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Tag hộ tth vào phát :) 

Mọi người vào topic thảo luận bài với ạ 

5 tháng 9 2016

Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )

=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)

=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)

<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )

<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)

Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)

Làm 2 BĐT tương tự rồi cộng vào => Đpcm 

5 tháng 9 2016

câu hỏi hay, éo biết làm =)

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

4 tháng 7 2019

\(f\left(x-1\right)=\left(x-1\right)\left(x\right)\left(x+1\right)\left(ax-a+b\right)\)

=> \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)mọi x

\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)=x\left(x+1\right)\left(2x+1\right)\)mọi x

\(\Leftrightarrow x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]=x\left(x+1\right)\left(2x+1\right)\)mọi x

\(\Leftrightarrow ax^2+2ax+bx+2b-ax^2+ax-bx+ax-a+b=2x+1\)mọi x

\(\Leftrightarrow4ax+3b-a=2x+1\)

Cân bằng hệ số :

\(\hept{\begin{cases}4a=2\\3b-a=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}\)

16 tháng 7 2019

a) Ta có $$\begin{aligned} f(x)-f(x-1) & =x(x+1)(x+2)(ax+b)-(x-1)x(x+1)(ax+b) \\ & = 4ax^3+3(a+b)x^2+(3b-a)x \end{aligned}$$
Và $x(x+1)(2x+1)=2x^3+3x^2+x$
Vậy $$4ax^3+3(a+b)x^2+(3b-a)x = 2x^3+3x^2+x \iff \begin{cases} 4a=2 \\ 3(a+b)=3 \\ 3b-a=1 \end{cases} \implies a=b= \dfrac{1}{2}$$

b) Ta có
$$\begin{array}{l}1.2.3= f(1)-f(0) \\ 2.3.5=f(2)-f(1) \\ 3.4.7= f(3)-f(2) \\ ... \\ n(n+1)(2n+1)=f(n)-f(n-1) \end{array}$$
$$\implies S=1.2.3+2.3.5+.....+n(n+1)(2n+1)= f(n-1)-f(0)= \boxed{\dfrac{(n-1)n(n+1)^2}{2}}$$

8 tháng 2 2020

Bài 1 dài dòng quá em :( Rút gọn bớt cũng được thì phải

8 tháng 2 2020

Chị ơi bài 1 em sai cái gì ko ạ ? đk x khác 3 mà đúng ko

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???

13 tháng 7 2017

\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)

\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)

\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)

\(\Leftrightarrow-4x^2+13x-17=0\)

\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)

\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)

\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm

\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)

\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)

\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)

\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)

\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)

Vậy phương trình vô nghiệm

13 tháng 7 2017

cảm ơn nha

27 tháng 11 2019

ơ bài nào v ...................

27 tháng 11 2019

Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)